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Abstract
We introduce a new method for the enumeration of self-avoiding walks based
on the lace expansion. We also introduce an algorithmic improvement, called
the two-step method, for self-avoiding walk enumeration problems. We obtain
significant extensions of existing series on the cubic and hypercubic lattices
in all dimensions d � 3: we enumerate 32-step self-avoiding polygons in
d = 3, 26-step self-avoiding polygons in d = 4, 30-step self-avoiding walks in
d = 3, and 24-step self-avoiding walks and polygons in all dimensions d � 4.
We analyze these series to obtain estimates for the connective constant and
various critical exponents and amplitudes in dimensions 3 � d � 8. We also
provide major extensions of 1/d expansions for the connective constant and
for two critical amplitudes.

PACS numbers: 02.10.Ox, 05.10.−a, 05.50.+q, 05.70.Jk

1. Introduction and results

1.1. Introduction

The self-avoiding walk (SAW) is a fundamental model in combinatorics and statistical physics
[48]. Efforts to enumerate SAWs have been undertaken during the last half century, starting
with [16]. The continuing advance of computing hardware is certainly helpful to this endeavor,
but the exponential complexity of the enumeration problem makes algorithmic advances just
as important. On the square lattice Z2, the development of the finite lattice method (see [11])
has made it possible to enumerate SAWs up to and including 71 steps [41], and self-avoiding
polygons up to 110 steps [40], a remarkable achievement. Above d = 2, progress has been
less dramatic due to the lack of an efficient algorithm. On the cubic lattice Z3, SAWs have
been enumerated up to and including 26 steps [47] (extending results of [25, 27, 46]), whereas
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enumerations in dimensions d = 4, 5, 6 are limited to respectively 19, 15, 14 steps [8] (slightly
extending results of [46])4.

In this paper, we propose and develop a new method for the enumeration of SAWs
based on the lace expansion [4]. The lace expansion is a method that has been used in the
mathematical literature to prove theorems about the critical behavior of SAWs, lattice trees
and lattice animals, percolation, and related models, above their upper critical dimensions.
For a recent overview, see [59]. In the case of SAWs, the lace expansion gives an identity
involving the number of n-step SAWs, valid in all dimensions d � 1. The principal advantage
of this identity, for enumeration purposes, is that it expresses the number of self-avoiding
walks of length n in terms of the number of lace graphs. Lace graphs consist of self-avoiding
polygons and certain related walk trajectories with self-intersections, taking n or fewer steps.
These trajectories are less spatially extended than SAWs of the same length, and are hence less
numerous, by a factor which is asymptotically the length to some non-negative power. This
makes them easier to enumerate. In practice, for the square lattice there are approximately
36 times as many 30-step SAWs as there are lace graphs, while for the cubic lattice there are
approximately 525 times as many SAWs of 30 steps as compared to lace graphs. This factor
gets much larger as the dimension is increased: the factor for d = 4, n = 24 is approximately
1700, for d = 5, n = 24, it is approximately 6200, while for d = 6, n = 24, it is approximately
20 000.

We also introduce an innovation for the direct enumeration of self-avoiding walks and
polygons that we call the two-step method. This method provides an exponential improvement
on brute force enumeration. We use the two-step method to enumerate the lace graphs, and
the combination of the two-step method with the lace expansion proves to be quite effective.

1.2. Enumeration results

An n-step SAW on Zd is a mapping ω : {0, 1, . . . , n} → Zd with |ω(i+1)−ω(i)| = 1 for each i
(|x| denotes the Euclidean norm of x) and with ω(i) �= ω(j) for all i �= j . For x ∈ Zd , let cn(x)

denote the number of n-step SAWs on Zd with ω(0) = 0 and ω(n) = x. Let cn = ∑
x∈Zd cn(x)

denote the number of n-step SAWs which start at 0, and let ρn = ∑
x∈Zd |x|2cn(x), so that

ρ̄n = ρnc
−1
n is the mean-square displacement. Let pn denote the number of unrooted undirected

self-avoiding polygons (SAP) of length n, i.e., pn = d
n
cn−1(e) where e denotes a neighbor of

0 in Zd .
We used the two-step method to enumerate pn for n � 32 for d = 3, for n � 26 for d = 4

and for n � 24 for all d � 5 (knowledge of pn for n � 24 and d � 12 determines pn also for
d > 12 since polygons with at most 24 steps can occupy at most 12 dimensions). We have
used the lace expansion to enumerate cn and ρn for n � 30 for d = 3, and for n � 24 for all
d � 4—in fact the lace expansion shows that enumeration of cn for n � 2k and d � k actually
gives the enumeration of cn for n � 2k for all d, so it suffices to enumerate cn for n � 24 and
d � 12 here. Tables of these enumerations of pn, cn and ρn are given in the appendix (see
also [9]). In particular, for d = 3,

c30 = 270 569 905 525 454 674 614, p32 = 53 424 552 150 523 386.

These enumerations are based on the enumeration of the lace graphs discussed in section 3.
Complete tables of the latter, also in machine-readable form, can be found in [9]. Our method
also applies for d = 2, but does not compete with the finite lattice method [40, 41]. Our SAP
enumerations differ from and correct those of [60] for n = 18 in dimensions d = 4, 5, 6, 7.

4 A note added in proof to [46] reports enumeration of SAWs up to 21 steps for d = 4 but does not reveal the number.
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The SAP enumerations were performed on brecca, a Linux cluster of Xeon 2.8 GHz CPUs
at the Victorian Partnership for Advanced Computing (VPAC). The d = 3, n = 30 calculation
took 450 CPU hours; d = 3, n = 32 took 5000 CPU hours; d = 4, n = 26 took 180 CPU
hours and the arbitrary dimension calculation for n = 24 took a total of 980 CPU hours.
The lace graph enumerations were performed on edda, a Linux cluster of Power5 CPUs at
VPAC. The d = 3, n = 30 calculation took 14 400 CPU hours and the arbitrary dimensional
calculation for n = 24 took 3400 CPU hours. Thus, the total CPU time was 15 000 h for the
calculation of c30 in d = 3 and 4400 h for c24 for all dimensions.

1.3. Expansions in powers of 1/d

Let µ = limn→∞ c
1/n
n denote the connective constant (a well-known subadditivity lemma

gives existence of the limit [29]). It is proved in [32] that µ has an asymptotic expansion in
powers of 1/d, to all orders, with integer coefficients. Using our lace graph enumerations, we
find that

µ = 2d − 1 − 1

2d
− 3

(2d)2
− 16

(2d)3
− 102

(2d)4
− 729

(2d)5
− 5533

(2d)6
− 42 229

(2d)7

− 288 761

(2d)8
− 1026 328

(2d)9
+

21 070 667

(2d)10
+

780 280 468

(2d)11
+ O

(
1

(2d)12

)
. (1)

Kesten proved that µ = 2d − 1 − 1
2d

+ O
((

1
2d

)2)
[42]. The coefficients in (1) up to and

including 102(2d)−5 were computed previously in [14, 32, 52] (with rigorous error estimate
in [32]). The other seven coefficients in (1) are new, and the error estimate is rigorous. The
above expansion would appear to have radius of convergence zero, but we have no proof of
this. The critical temperature of the spherical model is known to have an asymptotic 1/d

expansion with radius of convergence zero [19], and the suggestion that this is true rather
generally for 1/d expansions of critical points was made in [15]. Note the change in sign at
the term (2d)−10; a similar sign change is observed in [19] for the critical temperature of the
spherical model. An interesting mathematical question is to what degree the exact value of µ

could be recovered from knowledge of all the coefficients in its 1/d expansion, but we do not
attempt to answer that question here.

For dimensions d � 5, the lace expansion is used in [31] to prove that there is an ε > 0
such that cn and the mean-square displacement obey the asymptotic formulae

cn = Aµn[1 + O(n−ε)], ρ̄n = Dn[1 + O(n−ε)], (2)

with 1 � A � 1.493 and 1.098 � D � 1.803 when d = 5. We show that A and D have the
asymptotic expansions

A = 1 +
1

2d
+

4

(2d)2
+

23

(2d)3
+

178

(2d)4
+

1591

(2d)5
+

15 647

(2d)6
+

164 766

(2d)7
+

1825 071

(2d)8
+

20 875 838

(2d)9

+
240 634 600

(2d)10
+

2684 759 873

(2d)11
+

26 450 261 391

(2d)12
+ O

(
1

(2d)13

)
, (3)

D = 1 +
2

2d
+

8

(2d)2
+

42

(2d)3
+

284

(2d)4
+

2296

(2d)5
+

21 024

(2d)6
+

210 306

(2d)7
+

2242 084

(2d)8
+

24 909 542

(2d)9

+
280 764 914

(2d)10
+

3079 111 998

(2d)11
+

29 964 810 674

(2d)12
+ O

(
1

(2d)13

)
. (4)

This extends the series up to and including order (2d)−5 that were reported in [17, 52] and
[51] for A and D, respectively (the expansion to order (2d)−2 was obtained in [32]), and also
provides rigorous error estimates.
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1.4. Series analysis

We have performed extensive analysis of several series in dimensions 3 � d � 8, using the
method of differential approximants, the ratio method of Zinn-Justin and direct fits [26]. In
each dimension, we estimate the connective constant µ. For d = 3, we also estimate the critical
amplitudes A,D and exponents γ, ν in the asymptotic formulae cn ∼ Aµnnγ−1, ρ̄n ∼ Dn2ν

(for which there is overwhelming evidence but no rigorous proof), as well as the exponent
α in the formula pn ∼ Bµnnα−3. For d = 4, there is overwhelming evidence but no proof
that cn ∼ Aµn(log n)1/4 and ρ̄n ∼ Dn(log n)1/4 (for rigorous results on a four-dimensional
hierarchical lattice see [3]); we are only able to obtain imprecise estimates for the amplitudes
A,D. For d � 5, we estimate the amplitudes A,D in equation (2). The results of our series
analysis are tabulated and compared with other approaches in section 7.

1.5. Outline of paper

The rest of the paper is organized as follows. In section 2, we describe a new method of
enumerating self-avoiding walks and polygons using an algorithmic improvement that we call
the two-step method. In section 3, we derive the lace expansion and show how it can be
used to reduce the enumeration of cn and ρn to the enumeration of self-avoiding polygons
and other lace graphs. In addition, in section 3.3, we show that the enumeration of cn and ρn

for n � 24 in dimensions d � 12 is sufficient to obtain the enumerations for n � 24 in all
dimensions. In section 4, we discuss the 1/d-expansion for the connective constant µ and the
critical amplitudes A and D, and show how our enumerations lead to the expansions reported
above. In section 5, we review the methods of series analysis that we implement in section 6
to obtain the conclusions reported in section 7. The appendix contains tables of enumerations.

2. Enumeration methodology: the two-step method

We begin in section 2.1 with a brief discussion of enumeration of SAWs using a backtracking
algorithm and then discuss enumeration of self-avoiding polygons in section 2.2. An
improvement on brute force enumeration which we call the two-step method decreases the
exponential complexity of the problem and is discussed in section 2.3.

2.1. Enumeration of SAWs via brute force

The standard approach to the enumeration of SAWs using brute force enumeration via a
backtracking algorithm has a history spanning over half a century (see section 7.3 of [38] for
many references). To make efficient use of symmetry, we classify SAWs according to the total
number δ of dimensions they explore. The values of δ for an n-step SAW must lie between
1 and the minimum of d and n, i.e., 1 � δ � (d ∧ n). Let cn,δ denote the contribution to cn

due to walks which explore a total of δ dimensions, with the first step taken in the positive
1-direction, the first step out of this line taken in the positive 2-direction, the first step taken
out of this plane in the positive 3-direction and so on. Then,

cn =
d∧n∑
δ=1

αd(δ)cn,δ with αd(δ) =
δ−1∏
j=0

(2d − 2j). (5)

This results in a reduction in the number of distinct SAW configurations by a factor αd(δ)

for a configuration occupying δ out of d possible dimensions, e.g., α2(2) = 4 × 2 = 8 and
α3(3) = 6 × 4 × 2 = 48.
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The backtracking algorithm works recursively by generating all k-step self-avoiding walks,
and then appending an extra step in all possible ways, until n steps have been added. The
complexity of the algorithm is given by the number of nodes of the search tree, which in our
case is the sum of the number of self-avoiding walks ck with k � n, i.e. the time τ for the
algorithm to enumerate all self-avoiding walks up to length n is

τ(n) ∼ c1 + c2 + c3 + · · · + cn ∼ µn

where constant and power law factors have been dropped. Thus, the complexity of the
algorithm is µ. There have been some improvements on the basic method, notably dimerization
and trimerization [28, 46, 61], and although these improvements have allowed existing series
for self-avoiding walks to be extended, none has changed the complexity of the algorithm.
Our new approach, the two-step method described in section 2.3, does reduce the complexity.

The self-avoidance constraint is maintained by checking whether the neighbors of the tail
of the walk have previously been visited. In low dimensions (in practice for d � 4 for our
implementation) it is possible to use an array to keep track of the state of all sites in the lattice.
For higher dimensions the lattice becomes too large to fit into memory, and so a hash table
(see, e.g., [44, 49]) is used instead, where as a site is visited it is added to the hash table. Our
implementation used a hash table with linear probing, and in practice was about a factor of 2
slower than using an array.

2.2. Enumeration of self-avoiding polygons

The first of the lace graphs, π(1)
m , are also known as self-avoiding returns. A SAP is an

unrooted unoriented self-avoiding return, so that the number pm of SAPs obeys pm = 1
2m

π(1)
m

(for m � 4). Self-avoiding returns must have an even number 2n of steps, n of which are
in the positive coordinate directions and n in the corresponding negative directions. We
categorize self-avoiding returns by partitioning n according to the number of steps in each
positive direction.

The problem of enumeration of SAPs in general dimensions was addressed in [60], where
it was noted that enumeration of all SAPs with a given partition is most efficient if it is ensured
that the first step is taken in the direction with the smallest number of steps. For example, if
d = 2, n = 3, with partition [1, 2], then by taking the first step in the +1 direction we will
enumerate half the number of self-avoiding returns compared to taking the first step in the +2
direction. A slight improvement on this idea was used in this work, where instead of choosing
the first step in the direction with the smallest number of steps, the first direction is chosen
as that with the smallest sum of equal values in the partition. For example, for the partition
[3, 2, 2], if the first step is in the +1 direction then we will count three times the number of
SAPs with this partition, whereas if we choose a first step in the (indistinguishable) +2 or +3
directions, then we will count 2 + 2 = 4 times this number.

For small n, improvements in the efficiency of the algorithm are of the expected O(n),
however the major failing of this method is that for large enough n, the most numerous self-
avoiding polygons are those with nearly an equi-partition of step directions. Fortunately, for
our domain of interest, namely d � 3, n � 32, the partition method results in a significant
increase in efficiency, particularly for d � 4.

2.3. Two-step method

Backtracking enumeration algorithms take time which is dominated by the number of leaves
of the search tree. The two-step method is a modification of brute force enumeration which
exponentially decreases the number of leaves in the search tree and hence results in a decrease
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X

Z

Y

Figure 1. The allocation graph (solid lines) of a two-step walk (broken lines), with connected
components X, Y and Z.

in the complexity of the algorithm. In this section, we describe this method for the enumeration
of SAWs.

A two-step walk 
 is a SAW which takes two-steps chosen from ±ei ± ej where ek are
the standard unit vectors. To each such 
 taking n two-steps we associate a weight W(
),
which is the number of 2n-step SAWs whose restriction to every second vertex is 
. Then we
can enumerate 2n-step walks by summing the weights of all 
 that take n two-steps.

To compute the weight W(
) of a two-step walk, we use the allocation graph illustrated
in figure 1 and defined as follows. For a two-step in which both steps are in the same direction,
we introduce a loop rooted at the midpoint of the two-step. For a diagonal two-step, we
introduce an edge which is a perpendicular bisector (in the same two-dimensional plane as the
two-step itself). The result is the graph G
 depicted in figure 1, which consists of connected
components X (with one loop), Y (with one cycle) and Z (a tree). We partition the set of
connected components of G
 into the following four categories:

• T
 is the set of connected components of G
 which are trees.
• C
 is the set of connected components of G
 which contain exactly one cycle but no loop.
• L
 is the set of connected components of G
 which contain exactly one loop but no cycle.
• C+


 is the set of connected components of G
 in which the number of loops and/or cycles
is at least two.

Let NT denote the number of vertices of a tree T. Finally, we set

I
 =
{

1 if C+

 = ∅

0 otherwise.
(6)

Theorem 2.1. The weight of a two-step walk 
 is given by

W(
) = I
2|C
| ∏
T ∈T


NT . (7)

Proof. A SAW consistent with 
 can be regarded as an allocation of a vertex in G
 to each
two-step in 
, subject to the restriction that each two-step is allocated a distinct vertex which
is a possible intermediate step for that two-step. We represent this allocation by an arrow on
each edge in G
 pointing to the chosen vertex, i.e., by an orientation of the allocation graph.
An admissible orientation is one with at most one arrow pointing toward each vertex, i.e.,
with in-degree at most 1 at each vertex of the oriented allocation graph. The weight W(
)

is thus equal to the number of admissible orientations of the allocation graph G
. We show
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Figure 2. Admissible orientations of the connected components of the allocation graph of
figure 1.

the admissible orientations of the various components of the allocation graph of figure 1 in
figure 2.

It is plain that the number of admissible orientations of G
 is equal to the product of the
number of admissible orientations of each connected component. For each type of component,
this number is as follows:

• For a tree T ∈ T
, an admissible orientation is characterized by a choice of one vertex
to serve as a source, from which all arrows point away. Thus there are NT admissible
orientations.

• For a component in L
, removal of the single loop results in a tree, and the arrow on the
loop forces the vertex on the loop to be the source for the tree. Thus there is exactly one
admissible orientation.

• For a component in C
, there are two ways to orient the cycle, and each choice allocates
sources for any branches off the cycle. Thus there are exactly two admissible orientations.

• There are no admissible allocations for a component in C+

. This is easily verified for

cycles which overlap in the form of a � and also for dumbbell graphs, and the general
case is similar.

Together, these observations complete the proof. �

The data structure that we implement to represent an allocation graph must be able
to perform several operations quickly for dynamical backtracking, such as pruning a tree,
concatenation of components, identifying the size of a tree and so on. It is straightforward to
construct a data structure which allows these operations, so we do not give the details of our
choice here. In our implementation, it takes O(log n) time, for a tree of n vertices, to perform
the query operations, and O(1) time to perform the other operations.

The extension of the two-step method to the enumeration of self-avoiding polygons is
straightforward, even when combined with the partitioning of step directions as described in
section 2.2.

2.3.1. Complexity of the two-step and k-step methods. It is natural to ask why we are only
using the two-step method, rather than the three-step, four-step or k-step methods. Our partial
answer to this question has to do with the computational complexity of the k-step methods.
Suppose that we wish to enumerate all SAWs of length n = kl. There are two aspects to the
computational complexity: the time required to enumerate all k-step walks of length l and the
time required to compute the weight of each of these k-step walks. Let us begin with the first
of these issues.
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The usual subadditivity argument [29] shows that the number C
(k)
l of k-step walks of

length l grows exponentially with some growth rate λ = λk . Easy upper and lower bounds
on λ can be calculated in the usual way. For the upper bound, if we only disallow immediate
reversals then we see that if S is the number of sites reachable by a SAW in k steps, then

C
(k)
l � S(S − 1)l−1 = S(S − 1)(n−k)/k. (8)

In particular, for k = 2, since S = 8 for the square lattice this gives

λ2 �
√

7 = 2.645 . . . , (9)

and since S = 18 for the simple cubic lattice, it gives

λ2 �
√

17 = 4.123 . . . . (10)

A generalization even to three step would result in a significant improvement in this upper
bound, since for the simple cubic lattice there are S = 44 potential end sites in three steps,
and hence

λ3 � 3
√

S − 1 = 3.503 . . . . (11)

Note that exponential lower bounds on C
(k)
l can also easily be computed. For example, for

k = 2, if we allow two-steps only in the positive coordinate directions on the d-dimensional
cubic lattice then we see that

C
(2)
l �

(
d +

(
d

2

))l = (
d +

(
d

2

))n/2
, (12)

and hence

λ2 �
√

d +
(
d

2

)
. (13)

Next, we turn to the algorithmic complexity of the determination of the weight W(
) of a
given k-step walk 
 of length l. For the case k = 2, formula (7) can be computed in O(n) time
because the allocation graph of 
 can be calculated in O(n) time, and the weight can then be
calculated in O(n) time using depth first search on each of the connected components to count
the number of vertices (for trees), and determine if there are one or more cycles (as soon as a
second cycle is detected the weight must vanish). Thus this part of the computation does not
affect the exponential complexity, which remains λ2. In practice, we find that λ2 is roughly
2.4 for d = 2 and roughly 4.0 for d = 3. These measured values are less than µ ≈ 2.638 for
d = 2 and µ ≈ 4.68 for d = 3; indeed for d = 3 the upper bound

√
17 = 4.123 . . . is already

less than µ. Thus, the two-step method provides an exponential improvement by reducing the
complexity.

We refer to a SAW of length k that could possibly interpolate a given k-step of 
 as a
subwalk, and we regard a subwalk as consisting of the k vertices on the subwalk omitting the
initial vertex. The subwalk graph of 
 is the graph S
 defined as follows. The vertex set of
S
 is the set of all possible subwalks of 
. For SAWs we treat the origin as a special case,
adding the zero-step walk consisting of the origin to the subwalk graph. A pair of subwalks
forms an edge of S
 if the two subwalks intersect each other. In particular, the subwalks
which interpolate any given k-step of 
 form a clique (complete subgraph) in S
, since they
all intersect at the later endpoint of the step. Note that if there is only one subwalk we refer
to a single vertex as a clique. The weight W(
) is the number of ways of assigning non-
intersecting subwalks to each step of 
; in other words, W(
) is the number of independent
sets of size l + 1 in S
 (every independent set must include the origin). The presence of the
cliques noted above implies that no independent set contains more than l + 1 vertices of S
,
so when the weight W(
) is non-zero it corresponds to the number of maximum independent
sets of the subwalk graph.
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When k = 2 we can map the subwalk graph to an allocation graph and hence calculate
the weight in O(n) time. In contrast, for k � 3, the subwalk graphs can be considerably more
complicated. The maximum independent set problem for general graphs is NP-complete, and
we have no reason to believe that the subwalk graphs necessarily belong to a class of graphs
for which the maximum independent set problem can be solved in polynomial time. If not,
then the time necessary to update the weight factor is exponential in the number of vertices in
the graph and hence in the number of steps taken in the walk. Indeed it would be exponentially
hard to determine if the weight factor is zero! On the other hand, it may be that for small k there
exists an algorithm to enumerate independent sets that has sufficiently small complexity that
the overall algorithm is still faster than the two-step method or that there exists an algorithm
that is sub-exponential or fast on average for the graphs generated by the k-step method. This
line of thought merits further development, but we have not pursued it further here, and we
performed our enumerations using k = 2.

2.4. Parallelization of the algorithm

In order to perform the enumeration of lace graphs and polygons in a reasonable amount of
(calendar) time, it is necessary to divide the workload among many computers. It is possible
to parallelize backtracking algorithms by truncating the backtracking tree at a fixed level and
dividing the computation beyond that level between different machines. We did this in the
enumeration of polygons and lace graphs (defined in section 3), by truncating the backtracking
tree at six and eight steps, respectively, and saving the configurations so generated to a file.
We then split the file in order to run the backtracking algorithm with distinct sets of starting
configurations on multiple machines.

3. The lace expansion

In sections 3.1 and 3.2, we give a quick sketch of the derivation of the lace expansion, which
is the basis of our method. Further details can be found in the original paper [4], or, for a more
recent account, [59]. In sections 3.3 and 3.4, we discuss the enumeration of the lace graphs.

3.1. The recursion relation

Let c0(x) = δ0,x , and, for n � 1, let cn(x) denote the number of n-step self-avoiding walks
that begin at the origin and end at x ∈ Zd . The lace expansion gives rise to a function πm(x),
defined below, such that for n � 1,

cn(x) =
∑

y∈Zd :|y|=1

cn−1(x − y) +
n∑

m=2

∑
y∈Zd

πm(y)cn−m(x − y). (14)

Let D(x) = 1
2d

if |x| = 1 and otherwise D(x) = 0, and let f̂ (k) = ∑
x∈Zd f (x) eik·x

(for k = (k1, . . . , kj ) ∈ [−π, π ]d ) denote the Fourier transform of the function f . Then
D̂(k) = d−1 ∑d

j=1 cos kj . Fourier transformation of (14) gives

ĉn(k) = 2dD̂(k)ĉn−1(k) +
n∑

m=2

π̂m(k)ĉn−m(k). (15)

In particular, since cn = ĉn(0), if we write πm = π̂m(0) then (15) yields

cn = 2dcn−1 +
n∑

m=2

πmcn−m. (16)
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Thus knowledge of the coefficients πm for 2 � m � n allows for the recursive determination
of cn.

Let ρn = ∑
x |x|2cn(x) and rm = ∑

x |x|2πm(x). Application of − ∑d
i=1

∂2

∂k2
i

∣∣
k=0 to (15)

leads to the recursion

ρn = 2dcn−1 + 2dρn−1 +
n∑

m=2

rmcn−m +
n∑

m=2

πmρn−m. (17)

Thus knowledge of the coefficients cm, πm, rm for 2 � m � n allows for the recursive
determination of ρn.

3.2. Definition of πm(x)

In this section, we define πm(x) and sketch the derivation of (14). Let Wm(x) denote the set
of all m-step simple random walk paths (possibly self-intersecting) that start at the origin and
end at x. Given ω ∈ Wm(x), let

Ust (ω) =
{

−1 if ω(s) = ω(t)

0 if ω(s) �= ω(t).
(18)

Then,

cn(x) =
∑

ω∈Wn(x)

∏
0�s<t�n

(1 + Ust (ω)), (19)

since the product is equal to 1 if ω is a self-avoiding walk and is equal to 0 otherwise. We call
any set of pairs st , with s < t chosen from {0, 1, 2, . . . , n}, a graph. Let Bn denote the set of
all graphs. Expansion of the product in (19) gives

cn(x) =
∑

ω∈Wn(x)

∑
�∈Bn

∏
st∈�

Ust (ω). (20)

A graph � ∈ Bn is said to be connected 5 if both 0 and n are endpoints of edges in �,
and if in addition, for any integer c ∈ (0, n), there are s, t ∈ [0, n] such that s < c < t and
st ∈ �. In other words, � is connected if, as intervals of real numbers, ∪st∈�(s, t) is equal to
the connected interval (0, n). The set of all connected graphs on [0, n] is denoted by Gn. If
we partition the sum over connected graphs according to whether: (a) 0 does not occur in an
edge in the graph or (b) 0 does occur in an edge, then we are led to the identity (14) with

πm(x) =
∑

ω∈Wm(x)

∑
�∈Gm

∏
st∈�

Ust (ω). (21)

Case (a) gives rise to the first term on the right-hand side of (14) and case (b) gives rise to the
second term, with [0,m] the extent of the connected component containing 0.

An important alternate representation for πm(x) can be obtained in terms of laces. A lace
is a minimally connected graph, i.e., a connected graph for which the removal of any edge
would result in a disconnected graph. The set of laces on [0,m] is denoted by Lm, and the set
of laces in Lm which consist of exactly N edges is denoted L(N)

m (see figure 3).
Given a connected graph � ∈ Bm, the following prescription associates with � a unique

lace L� ⊂ �: the lace L� consists of edges s1t1, s2t2, . . ., with t1, s1, t2, s2, . . . determined, in
that order, by

t1 = max{t : 0t ∈ �}, s1 = 0,

ti+1 = max{t : ∃s < ti such that st ∈ �}, si+1 = min{s : sti+1 ∈ �}.
Given a lace L, the set of all edges st /∈ L such that LL∪{st} = L is denoted by C(L). Edges in
C(L) are said to be compatible with L.
5 This is not the standard graph-theory definition of a connected graph.
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Figure 3. Laces in L(N)
m for N = 1, 2, 3, 4, with s1 = 0 and tN = m.

Figure 4. Self-intersections required for a walk ω with
∏

st∈L Ust (ω) �= 0, for the laces with
N = 1, 2, 3, 4 bonds depicted in figure 3. The picture for N = 11 is also shown. A slashed
subwalk may have length zero.

We write L ∈ L(N)
m as L = {s1t1, . . . , sN tN }, with sl < tl for each l. The fact that L is a lace

is equivalent to a certain ordering of sl and tl . For N = 1, we simply have 0 = s1 < t1 = m.
For N � 2, L ∈ L(N)

m if and only if

0 = s1 < s2, sl+1 < tl � sl+2 (l = 1, . . . , N − 2), sN < tN−1 < tN = m

(22)

(for N = 2 the vacuous middle inequalities play no role), see figure 3. Thus L divides [0,m]
into 2N − 1 subintervals:

[s1, s2], [s2, t1], [t1, s3], [s3, t2], . . . , [sN , tN−1], [tN−1, tN ]. (23)

Of these, intervals number 3, 5, . . . , (2N − 3) can have zero length for N � 3, whereas all
others have length at least 1.

The sum over connected graphs can be achieved by summing over laces L and over
connected graphs for which the above prescription produces L. A resummation of the sum
over connected graphs then leads to the formula

πm(x) =
∑

ω∈Wm(x)

∑
L∈Lm

∏
st∈L

Ust (ω)
∏

s ′t ′∈C(L)

(1 + Us ′t ′(ω)). (24)

For details, see [4] or [59]. We restrict the sum in (24) to laces with N edges, and introduce a
minus sign to obtain a non-negative integer, to define

π(N)
m (x) =

∑
ω∈Wm(x)

∑
L∈L(N)

m

∏
st∈L

(−Ust (ω))
∏

s ′t ′∈C(L)

(1 + Us ′t ′(ω)). (25)

The right-hand side of (25) is zero unless N < m (since otherwise L(N)
m is empty) and hence

πm(x) =
m−1∑
N=1

(−1)Nπ(N)
m (x). (26)

Note that each term in the sum (25) is either 0 or 1. The first product in (25) is equal to 1
precisely when ω(s) = ω(t) for each edge st ∈ L. The second product is equal to 1 precisely
when ω(s ′) �= ω(t ′) for each s ′t ′ ∈ C(L). Thus, the edges in the lace require ω to have certain
self-intersections, while the compatible edges enforce certain self-avoidance conditions. The
self-intersections required are illustrated in figure 4. The simplest term is π(1)

m (x), which is
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zero if x �= 0, and which is the number of m-step self-avoiding returns to the origin when
x = 0. Thus π(1)

m (x) can be expressed in terms of the number of self-avoiding polygons by
π(1)

m (x) = 2mpmδx,0 for m � 4, while π
(1)
2 (x) = 2dδx,0 on Zd . For N � 2, π(N)

m (x) counts
m-step walk configurations as indicated in figure 4. The number of loops in a diagram is equal
to the number of edges in the corresponding lace. In these diagrams, each line represents a
self-avoiding walk. The lines which are slashed correspond to subwalks which may consist of
zero steps, but the others correspond to subwalks consisting of at least one step. The combined
number of steps taken by all the subwalks is m. If the 2N − 1 subwalks in the N-loop diagram
are sequentially labeled 1, 2, . . . , 2N − 1, then the subwalks are mutually avoiding (apart
from the required intersections) with the following patterns: [123] for N = 2; [1234], [345]
for N = 3; [1234], [3456], [567] for N = 4; [1234], [3456], [5678], [789] for N = 5 and
so on for larger N. In the above, e.g., for N = 4, the meaning is that subwalks 1, 2, 3, 4 are
mutually avoiding apart from the enforced intersections explicitly depicted, as are subwalks
3, 4, 5, 6 and subwalks 5, 6, 7. However, subwalks not grouped together are permitted to
freely intersect, e.g., for N = 4, subwalks 1, 2 are permitted to intersect subwalks 5, 6, 7, and
subwalks 3 and 4 can intersect subwalk 7.

The two-loop diagram π(2)
m is closely related to what are often called theta graphs.

Differences are that π(2)
m (x) includes ‘trivial’ loops in which the first or last step immediately

reverses its predecessor, or the last step equals the first step, and also π(2)
m involves oriented

walks and is rooted at the origin. Taking these differences into account, we find that

θn = 1
2

1
3!

(
π(2)

n − 3π
(1)
n−1

)
, Rn = 1

2
1
3!

(
r(2)
n − 3π

(1)
n−1

)
, (27)

where θn counts the number of n-step theta graphs, and Rn is the number weighted by the
square of the distance between the two vertices of degree 3.

3.3. Decomposition by dimension

Let π(N)
m = ∑

xπ
(N)
m (x) and r(N)

m = ∑
x |x|2π(N)

m (x). Our basic task is to determine

πm =
m−1∑
N=1

(−1)Nπ(N)
m and rm =

m−1∑
N=1

(−1)Nr(N)
m . (28)

As in section 2.1, to make efficient use of symmetry, we classify contributions to (25) according
to the total number δ of dimensions explored by the m-step walk ω. Let π

(N)
m,δ denote the

contribution to π(N)
m due to walks which explore a total of δ dimensions, with the first step

taken in the positive 1-direction, the first step out of this line taken in the positive 2-direction,
the first step taken out of this plane in the positive 3-direction and so on. Then,

π(N)
m =

d∧ m
2∑

δ=1

αd(δ)π
(N)
m,δ with αd(δ) =

δ−1∏
j=0

(2d − 2j). (29)

Similarly, let r
(N)
m,δ denote the contribution to r(N)

m due to walks which explore a total of δ

dimensions, with the first step taken in the positive 1-direction, the first step out of this line
taken in the positive 2-direction, the first step taken out of this plane in the positive 3-direction
and so on. Then,

r(N)
m =

d∧ m
2∑

δ=1

αd(δ)r
(N)
m,δ . (30)
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Thus, we have

πm =
d∧ m

2∑
δ=1

αd(δ)πm,δ, rm =
d∧ m

2∑
δ=1

αd(δ)rm,δ, (31)

with

πm,δ =
m−1∑
N=1

(−1)Nπ
(N)
m,δ , rm,δ =

m−1∑
N=1

(−1)Nr
(N)
m,δ , (32)

and it suffices to enumerate π
(N)
m,δ and r

(N)
m,δ . In the next section, we explain how we do so.

Interestingly, enumeration of cn for n � 2k and d � k actually gives the enumeration of
cn for n � 2k in all dimensions. In particular, our enumerations of cn for n � 24 and d � 12
allow for the enumeration of cn for n � 24 in all dimensions d. (Similar reasoning applies
for rn.) The idea is simple. Given cn for n � 2k and d � k, we can solve (16) for πm for
m � 2k and d � k. From this, we can determine πm,δ for m � 2k, δ � k. But since πm,δ = 0
whenever δ > m

2 , this determines πm for m � 2k in all dimensions d via (31). From this, (16)
recursively determines cn for n � 2k in all dimensions d.

As a final remark, we note that an extension of our enumerations to enumerate also π(N)
m (x)

would have the potential to significantly simplify the proof in [30] of mean-field behavior for
SAWs in dimensions d � 5.

3.4. Enumeration of lace graphs

In this section, we describe the method used to enumerate π
(N)
m,δ . Straightforward modifications

of the method allow for the enumeration of ρ
(N)
m,δ and we do not discuss this further. Our

enumerations of πm,δ = ∑m−1
N=1(−1)Nπ

(N)
m,δ , pn, cn and rn are given in the appendix, and

the enumerations of π
(N)
m,δ and ρ

(N)
m,δ on which they are based are given in [9]. We also list

enumerations of θn and Rn (see (27)) in [9].
The case N = 1 amounts to the enumeration of self-avoiding polygons, which we have

discussed already. For N � 2, the enumeration of lace graphs using the two-step method
is significantly more complicated, due to the possibility of visiting a site multiple times, the
fact that sites visited by a two-step may belong to different subwalks, and the possibility of
immediate returns. In practice, we find that the complexity of enumeration is significantly
reduced from µ in the generation of two-step lace graphs, but not to the same extent as for
self-avoiding walks.

Many of the lace graphs consist of a single loop and hence contribute to π(1), and we
illustrate this by calculating the ratio

r(m, δ) = π
(1)
m,δ∑m−1

N=1 π
(N)
m,δ

. (33)

We find that r(30, 2) = 0.0625 . . . , r(30, 3) = 0.3393 . . . , r(24, 4) = 0.6008 . . . , r(24, 5) =
0.7493 . . . and r(24, 6) = 0.8407 . . .. For d = 3, n = 30, one can see that performing the
π(1) calculation separately will reduce the running time of the algorithm by a useful amount
of 34%. For the arbitrary dimension calculation with m = 24 we sum over all dimensions
before calculating the ratio∑12

δ=1 π
(1)
24,δ∑12

δ=1

∑23
N=1 π

(N)
24,δ

= 0.8718 . . . , (34)
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ω1 2ω

Figure 5. Generation of a lace graph via backtracking.

and it indicates that 87% of the graphs generated for m = 24 are single loop graphs. Thus,
the enumeration of polygons is a substantial part of our analysis, and this part is performed
separately.

As described in section 3.2, the lace graphs have an interpretation in terms of a pattern
of mutual avoidance between the 2N − 1 self-avoiding subwalks in an N-loop graph. For
enumeration purposes, these conditions are surprisingly simple, and the basic idea is as follows.
In the following description (see figure 5),

ω1 is a subwalk on which a loop may be completed,
ω2 is the current subwalk, which must be avoided and
the tail of the walk is the last visited site.

First a self-avoiding return is formed, and the count for π(1) is incremented. Then ω1 is
set as the loop and ω2 is set as the origin. Steps are added to the graph, namely to subwalk ω2,
such that ω2 remains self-avoiding. When contact is made with ω1 a loop is formed and hence
this configuration contributes to π(2), and then the current ω1 is erased, and ω1 is set to the
old ω2, while ω2 is just set as the tail of the walk. This procedure is then repeated, as shown
schematically in figure 5, where the part of the walk with a dashed line has been erased. Steps
are added in a self-avoiding way to ω2 until the tail reaches a site on ω1, at which point the
count for π(N) is updated, ω1 is erased and the process starts again.

We initialize the system as follows:

N ⇐ 0 {N is the number of loops}
m ⇐ 0 {m is the length}
δ ⇐ 0
All π

(N)
m,δ set to 0

Set walk ω1 to be the origin
Set walk ω2 to be empty
Set the origin to be occupied
tail ⇐ origin

The procedure is described more precisely by the following pseudocode:

Recursive procedure, Enumerate lace:
for all s ∈ neighborhood(tail) do

m ⇐ m + 1
if step explores a new dimension then

δ ⇐ δ + 1
end if
if s is empty then

ω2 ⇐ ω2 : s{append s to ω2}
Set s to be occupied
tail ⇐ s
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Call Enumerate lace
else if s ∈ ω1 then

N ⇐ N + 1{a loop has been completed}
π

(N)
m,δ ⇐ π

(N)
m,δ + 1{increment count}

ω1 ⇐ ω2

ω2 ⇐ s

tail ⇐ s

Call Enumerate lace
else if s ∈ ω2 then

Do nothing{reject this step}
end if
Restore configuration

end for
Return

The exponential complexity of the algorithm will not change depending on the
implementation, but it is possible to make gains in the power of n which is a factor, so
we make efforts to obtain an efficient implementation. Some general considerations given on
backtracking algorithms in the context of search and existence algorithms in [50] also apply for
enumeration applications. For algorithms with exponential complexity, the operations which
dominate the running time of the algorithm are near the leaves of the tree. This observation
leads to two main conclusions regarding the design of backtracking algorithms: (a) if an
expensive operation near the root of the tree can limit the number of leaves of the tree, then it
will reduce the run time of the algorithm (i.e., prune near the root) and (b) near the leaves of
the tree it is important to have the basic operations run as rapidly as possible.

Our implementation used doubly linked lists for the subwalks ω1 and ω2 and satisfied (a)
by terminating the backtracking tree whenever it could be determined that it is impossible due
to geometric constraints to generate a valid lace graph from the current configuration. We
implemented a fast heuristic operation to do this which takes time that is linear in the number
of sites that are potential endpoints of a lace graph generated from the current configuration.
In order to satisfy (b) we optimized the treatment of the final four steps by writing separate
code which eliminated any expensive operations on the linked list structures.

One further technical point is that there is a bijection between lace graphs of m + 1 steps
which return immediately to the origin with their second step and lace graphs of m steps. In
our implementation, we forbade this initial immediate return, and it was a simple process to
extract the correct π

(N)
m,δ from the resulting enumerations.

4. Expansions in powers of 1/d

In this section, we explain how to combine our enumerations with estimates on the lace
expansion to derive the 1/d expansions (1), (3) and (4) for the connective constant µ and for
the amplitudes A and D. Let zc = 1/µ denote the radius of convergence of the susceptibility
χ(z) = ∑∞

n=0 cnz
n. We will rely on the standard lace expansion estimate that for each N � 1

there is a constant CN , independent of sufficiently large d, such that

∞∑
m=2

m−1∑
M=N

mπ(M)
m zm

c � CNd−N,

∞∑
m=2

m−1∑
M=N

r(M)
m zm

c � CNd−N . (35)

The bounds (35) can be gleaned, e.g., from section 5.4 and the solution to exercise 5.17 of
[59] ([30] has related bounds valid for all d � 5). We will supplement (35) by proving that
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for each j � 2, N � 1 there is a constant CN,j , independent of large d, such that

∞∑
m=j

mπ(N)
m zm

c � CN,jd
−j/2,

∞∑
m=j

r(N)
m zm

c � CN,jd
−j/2. (36)

4.1. 1/d expansion for the connective constant

It is proved in [31] that, for d � 5, zc obeys the equation

zc = 1

2d

[
1 −

∞∑
m=2

πmzm
c

]
. (37)

It then follows from the first estimates of (35) and (36) that

zc = 1

2d

[
1 −

2N∑
m=2

N∑
M=1

(−1)Mπ(M)
m zm

c

]
+ O(d−N−2), (38)

where we have used the fact proved in [32] that zc has an asymptotic expansion in powers
of d−1, to replace an error term of order d−N−3/2 by one of order d−N−2. Knowledge of
the coefficients π(M)

m for m � 2N and M � N permits the recursive calculation of the
terms in the 1/d expansion for zc up to and including order d−N−1. Our enumerations with
m � 24,M � 12 give

zc = 1

2d
+

1

(2d)2
+

2

(2d)3
+

6

(2d)4
+

27

(2d)5
+

157

(2d)6
+

1065

(2d)7
+

7865

(2d)8
+

59 665

(2d)9

+
422 421

(2d)10
+

1991 163

(2d)11
− 16 122 550

(2d)12
− 805 887 918

(2d)13
+ O

(
1

(2d)14

)
. (39)

Taking the reciprocal gives the 1/d expansion for µ stated in (1).

4.2. 1/d expansion for the amplitudes A and D

It is proved in [31] that for d � 5 the amplitudes A and D of (2) are given by the formulae

1

A
= 2dzc +

∞∑
m=2

mπmzm
c , D = A

[
2dzc +

∞∑
m=2

rmzm
c

]
. (40)

It then follows from (35) and (36) that

1

A
= 2dzc +

2N∑
m=2

N∑
M=1

(−1)Mmπ(M)
m zm

c + O(d−N−1) (41)

and

D = A

[
2dzc +

2N∑
m=2

N∑
M=1

(−1)Mr(M)
m zm

c

]
+ O(d−N−1). (42)

Note that there can again be no fractional powers in the error estimates—it can be argued
from the fact that zc has an asymptotic expansion to all orders in powers of d−1, together
with the representations of π(M)

m and r(M)
n as polynomials in d in (31), that A and D also have

asymptotic expansions to all orders in powers of d−1. Insertion of (39) and our enumerations
for m � 24,M � 12 into (2) and (42) gives the series (3) and (4).
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4.3. Proof of the error estimates (36)

It remains to prove (36). We do so in the rest of this section, by making use of notation
and results from chapters 4 and 5 of [59], and of chapter 6 of [48] (see [35] for related ideas
applied to percolation). We assume throughout this section that d is large, and we write c for a
constant, possibly depending on N and j but independent of d, whose value is unimportant
and may change from line to line.

Preliminaries. We will need the norms ‖f ‖∞ = supx∈Zd |f (x)| and ‖f ‖2 =[∑
x∈Zd |f (x)|2]1/2

for functions f : Zd → R, and also the norms ‖f̂ ‖p =[
(2π)−d

∫
[−π,π]d |f̂ (k)|p dk

]1/p
for the Fourier transform f̂ (k) = ∑

x∈Zd f (x) eik·x . The

inverse Fourier transform is given by f (x) = (2π)−d
∫

[−π,π]d f̂ (k) e−ik·x dk, from which

we conclude that ‖f ‖∞ � ‖f̂ ‖1. The Parseval relation asserts that ‖f ‖2 = ‖f̂ ‖2. The
convolution (f ∗ g)(x) = ∑

y f (x − y)g(y) obeys ‖f ∗ g‖∞ � ‖f ‖2‖g‖2, by the Cauchy–

Schwarz inequality, and f̂ ∗ g = f̂ ĝ.
Let D : Zd → R be the one-step transition probability for the simple random walk, i.e.,

D(x) = 1
2d

if |x| = 1 and otherwise D(x) = 0. Let D∗l denote the convolution of l factors of
D, so that D∗l (x) is the probability that a simple random walk goes from 0 to x in l steps. It is
an elementary fact that the probability that a simple random walk on Zd returns to its starting
point after 2i steps obeys

D∗(2i)(0) =
∫

[−π,π]d
D̂(k)2i dk

(2π)d
= ‖D̂i‖2

2 � cid
−i (43)

with ci independent of the dimension d (see (3.12) of [35] for a simple proof). By the
Cauchy–Schwarz inequality and the Parseval relation, it follows that

‖D∗j‖∞ � ‖D∗(j−1)‖2‖D‖2 = ‖D̂j−1‖2‖D̂‖2 � cd−j/2, (44)

and it is this inequality that will give us the desired factor d−j/2 in (36). Direct calculation
gives D̂(k) = 1

d

∑d
j=1 cos kj for k = (k1, . . . , kd), and hence

∂j D̂(k) = − 1

d
sin kj , ∂2

j D̂(k) = − 1

d
cos kj , (45)

where ∂j denotes differentiation with respect to kj .
Let Gzc

(x) = ∑∞
m=0 cm(x)zm

c . It is shown in corollary 6.2.6 of [48] that
∥∥Gzc

∥∥
2 is

bounded by a d-independent constant. In addition,
∥∥Gzc

∗ Gzc

∥∥
2 = ∥∥Ĝzc

∥∥2
4, and

∥∥Ĝzc

∥∥
p

is
bounded by a d-independent constant, for any fixed p, if d is sufficiently large (depending on
p). This can be shown using the infrared bound given in (6.2.19) of [48] or (5.36) of [59] (see
exercise 5.18(a) of [59] for the d-independence of the upper bound).

Proof of (36). With the above preliminaries, we are now in a position to prove (36). We fix
j and N and consider the sums

∑∞
m=j mπ(N)

m zm
c and

∑∞
m=j r(N)

m zm
c . Each is bounded using

the N-loop diagram which has 2N − 1 subwalks and which consists of at least j steps. The
first j steps must be allocated among a certain number of the subwalks, and we denote this
number by �, so that the �th subwalk contains the (j + 1)st vertex (if the (j + 1)st vertex is
the last vertex of some subwalk then we take this to be the �th subwalk; the first vertex is the
origin). We denote the length of the first � − 1 subwalks by ji for i = 1, . . . , � − 1, and we
set j� = j − ∑�−1

i=1 ji . The number of possibilities for � and j1, . . . , j� depends only on j and
N. It therefore suffices to obtain an upper bound of the form CN,jd

−j/2 for the case of fixed �

and j1, . . . , j�, and we will prove such a bound.
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For the two sums of interest, namely
∑∞

m=j mπ(N)
m zm

c and
∑∞

m=j

∑
x |x|2π(N)

m (x)zm
c ,

we decompose the factors m and |x|2 among the subwalks using m = ∑2N−1
k=1 mk and

|x|2 � (2N − 1)
∑2N−1

k=1 |xk|2, where mk and xk denote the length and displacement of
the kth subwalk. In either case, it suffices to estimate a single term in this decomposition,
which leads us to consider an N-loop diagram in which the (j + 1)st vertex lies in the �th
subwalk, and in which the kth subwalk carries either a factor mk or |xk|2. A small extension
of (4.40) and (4.41) of [59] yields an upper bound

‖fk‖∞
∏

‖fi ∗ fi ′ ‖∞ (46)

where fa is the generating function appropriate for the ath subwalk, and where the factors
in the product are formed from consecutive pairs (i, i ′) from the set {1, . . . , 2N − 1} with k
removed. We consider the three cases (i) k > �, (ii) k < �, (iii) k = �, and show that each
case obeys the desired upper bound.

Case (i) k > �. In this case, the factor ‖fk‖∞ is either supx

∑∞
m=1 mcm(x)zm

c or
supx |x|2 ∑∞

m=1 cm(x)zm
c . These are both bounded by a d-independent constant for large

d, using corollary 6.2.6 and (6.2.39) of [48].
The factors ‖fi ∗ fi ′ ‖∞ with i > � are all bounded above by

∥∥Gzc
∗ Gzc

∥∥
∞ �

∥∥Gzc

∥∥2
2,

which is bounded by a d-independent constant as noted previously.
For the remaining factors ‖fi ∗ fi ′ ‖∞, consider first the case i ′ < �. In this case, we

bound the generating functions above by their simple random walk counterparts to see that

‖fi ∗ fi ′ ‖∞ � (2dzc)
ji+ji′ ‖D∗(ji+ji′ )‖∞ � cd−(ji+ji′ )/2, (47)

where we have used (44) and the fact that 2dzc � 2 due to the elementary bound z−1
c = µ � d.

Thus it suffices to consider the cases i = � and i ′ = � and to show that in either case

‖fi ∗ fi ′ ‖∞ � cd−[j−∑
n′<�(jn+jn′ )]/2. (48)

We show this when i = �; the case i ′ = � is similar. Note that when i = �, j − ∑
i ′<�(ji + ji ′)

is simply j�. When i = � we can bound the first j� steps of the �th subwalk by simple random
walk to obtain

‖fi ∗ fi ′ ‖∞ �
∥∥(2dzc)

j�D∗j� ∗ Gzc
∗ Gzc

∥∥
∞. (49)

The factor (2dzc)
j� plays no role, and the Cauchy–Schwarz inequality gives∥∥D∗j� ∗ Gzc

∗ Gzc

∥∥
∞ � ‖D∗j�‖2

∥∥Gzc
∗ Gzc

∥∥
2 � cd−j�/2, (50)

where we used (43) and the fact noted above that
∥∥Gzc

∗ Gzc

∥∥
2 � c. This completes the proof

in case (i).

Case (ii) k < �. We again bound the first j steps by simple random walk. The factor
‖fk‖∞ pertains to a walk of length jk and carries a factor mk = jk or |xk|2 � j 2

k (since the
displacement cannot exceed the number of steps). These additional factors have an upper
bound depending only on j and N and can thus be ignored. This factor is then bounded by
cd−jk/2 and the rest of the argument follows as in case (i); we omit further details.

Case (iii) k = �. In this case, the factors ‖fi ∗ fi ′ ‖∞ with i ′ < � are bounded via simple
random walk, as in case (i), to give a combined upper bound cd− ∑

n<� jn/2. Also, the factors
with i > � are bounded above by a constant, again as in case (i). It suffices to show that
‖f�‖∞ � cd−j�/2.

The generating function f� has two features that we must take into account: the walks
involved take at least j� steps, and there is a factor m� or |x�|2 present. When m� is present, we
write it as m� = j� + (m� − j�). When |x�|2 is present, we write x� = y1 + y2 where y1 is the
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displacement of the first j� steps and y2 is the displacement of the remaining m� −j� steps, and
use the inequality |x�|2 � 2(|y1|2 + |y2|2). The factors j� or |y1|2 are bounded by a constant
depending only on j and N, and they can be ignored. The contribution to ‖fk‖∞ due to either
of these cases is then bounded above by

∥∥(2dzc)
j�D∗j� ∗ Gzc

∥∥
∞, which is bounded above by

cd−j�/2 as required, using the Cauchy–Schwarz inequality and bounds already discussed. It
remains to estimate the contribution due to either m� − j� or |y2|2.

The case of m� −j� is easily bounded above by
∥∥(2dzc)

j�D∗j� ∗Gzc
∗Gzc

∥∥
∞, which as we

have seen in case (i) is at most cd−j�/2, as required. Let X(x) = |x|2Gzc
(x). The remaining

case, with |y2|2, contributes at most

‖(2dzc)
j�D∗j� ∗ X‖∞ � c‖D∗j�‖2‖X‖2 = c‖D̂j�‖2‖X̂‖2 � cd−j�/2‖X̂‖2. (51)

It now suffices to show that ‖X̂‖2 is bounded by a d-independent constant. But X̂ =
−∑d

i=j ∂2
j Ĝzc

, and, writing F = 1/Ĝzc
and �(x) = ∑∞

m=2 πm(x)zm
c , (6.2.24) of [48] gives

∣∣∂2
j Ĝzc

∣∣ � c

(∣∣∂2
j D̂

∣∣
F 2

+

∣∣∂2
j �̂

∣∣
F 2

+
|∂j D̂|2

F 3
+

|∂j D̂||∂j �̂|
F 3

+
|∂j �̂|2

F 3

)
. (52)

It suffices to obtain an O(d−1) upper bound on the L2 norm of each term on the right-hand
side.

By (45), the L2 norm of the first term on the right-hand side of (52) is at most cd−1
∥∥Ĝ2

zc

∥∥
2,

which we have seen is O(d−1). It is shown in corollary 6.2.7 of [48] that ∂a
j �̂ = O(d−2) for

a = 1, 2. Together with our previous observation that
∥∥Ĝzc

∥∥
6 � c, this is sufficient for our

needs and completes the proof of the error estimates (36).

5. Analysis of series: methodology

The presumed asymptotic forms for cn, ρn and pn for d = 3 are given by

cn ∼ µnnγ−1
(
A +

a1

nθ
+

a2

n
+

a3

n1+θ
+

a4

n2
+ · · ·

)
+ µn(−1)nnα−2

(
b0 +

b1

nθ
+

b2

n
+

b3

n1+θ
+

b4

n2
+ · · ·

)
, (53)

ρn ∼ µnnγ +2ν−1

(
AD +

d1

nθ
+

d2

n
+

d3

n1+θ
+

d4

n2
+ · · ·

)

+ µn(−1)nnα−2
(
e0 +

e1

nθ
+

e2

n
+

e3

n1+θ
+

e4

n2
+ · · ·

)
, (54)

pn ∼ µnnα−3

(
B +

f1

nθ
+

f2

n
+

f3

n1+θ
+

f4

n2
+ · · ·

)
(n even). (55)

The alternating terms in the formulae for cn and ρn are manifestations of a generating
function singularity at −zc = −1/µ. This singularity, widely believed but not rigorously
proved to exist, is known as the anti-ferromagnetic singularity due to its similarity to a
corresponding singularity in the Ising model. Anti-ferromagnetic singularities are generally
expected to occur on loose-packed (certain bipartite) lattices such as Zd . The fact that the
polygon exponent α governs the effect of this singularity on the series has very strong numerical
evidence for d = 2 [7, 41] and was suggested as early as [22]. As we will argue in [10],
the alternating signs in the values of πm provide direct evidence both for the existence of the
anti-ferromagnetic singularity and the role of α in its behavior (see tables A1 and A2—we
believe but have not proved that the alternation in sign persists for all m).
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We find that the conventional assumption (see, e.g., [7, 47]) that the leading confluent
correction θ is the same for cn and ρn is well supported by our results. The series we have for
pn are too short to say anything definitive in this respect. There is an implicit assumption in
the formulae above that θ is close to 0.5 and therefore integer multiples of the form 2kθ are
indistinguishable from integer terms, while (2k + 1)θ ≈ k + θ . If θ is not exactly 0.5 then this
assumption must eventually break down for high-order terms in the asymptotic form.

Series analysis is a collection of methods for estimating the values of µ, γ, ν, α, etc,
given the values of cn, ρn, pn for n � N . For an extensive overview of methods of series
analysis, see [26]. We apply the methods of differential approximants [26] (a generalization
of Padé approximants, also called integral approximants [39]), the version of the ratio method
due to Zinn-Justin [5, 26, 62, 63] and direct fitting of the presumed asymptotic form. In this
section, we discuss each of the methods in some detail. (We have also applied Neville–Aitken
extrapolation and the Brezinski θ algorithm [26], but neither of these methods produced
improved results.)

5.1. The method of differential approximants

In the method of differential approximants, the unknown generating function is represented
by the solution to an ordinary differential equation of the form

K∑
i=0

Qi(z)
dif

dzi
= P(z). (56)

The functions P and Qi are polynomials, of degrees L and Ni . We choose L � 5,K =
1, 2, 3, NK � 3 (which guarantees at least three regular singularities), and take QK to
have highest-order coefficient equal to 1. The order of the polynomials was chosen so
that |Ni − Nj | � 2. Given coefficients a0, . . . , aN , the polynomials P,Qi are chosen so that
the polynomial

∑N
n=0 anz

n solves the differential equation to within an error of order zN+1.
This choice is made by solving a system of linear equations in L+K + 1 +

∑K
i=0 Ni unknowns,

determined from N + 1 known coefficients.
The series we analyze for d = 3, in particular, produce many defective approximants

which have singularities near the physical singularity, or clearly incorrect singularities on
or near the positive real axis, which may distort estimates of the critical point and critical
exponents. We attribute this, in part, to the existence of strong confluent corrections. In
practice, eliminating defective approximants does not change central estimates in the series
we analyzed significantly, but does slightly reduce the spread of estimates, and especially for
K = 1, 2 and large N, eliminates most of the approximants. This introduces a systematic
bias, and it is primarily for this reason that we chose not to eliminate defective approximants.
Instead we iteratively eliminated outliers in our analysis, for which the critical point and
critical exponents differ from the mean by more than r times the standard deviation, with the
subjective choice r = 3. We report the standard deviation of the estimates of the remaining
approximants, as an indication of their spread.

It is straightforward to ensure that there is a singularity at a biased value of zc by introducing
an additional linear equation:

QK(zc) = 0. (57)

It is less straightforward to bias the exponent without simultaneously fixing the critical point,
but this is usually achieved by plotting estimates of the exponent against zc from unbiased
estimates, and exploiting the fact that this relation is generally observed to be linear to fix the
exponent and obtain a biased estimate of zc.
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For d = 3, as we will explain below, we find that strong confluent corrections cause
the central estimates obtained from differential approximants to drift steadily, which makes it
difficult to extrapolate and obtain a final value for zc. An exception is for ρ̄n, for which we
know that the critical value is exactly zc = 1. This enables us to bias for a confluent singularity
(see [26]) at zc = 1 via the imposition of the linear equations:

QK(1) = Q′
K(1) = QK−1(1) = 0 (58)

for K � 2. The confluent exponents may then be obtained as the two solutions α, β of the
quadratic indicial equation
1
2 (λ − (K − 2))(λ − (K − 1))Q′′

K(1) + (λ − (K − 2))Q′
K−1(1) + QK−2(1) = 0 (59)

in λ. This equation may be written in the form

aλ2 + bλ + c = 0, (60)

and its roots obey

α + β = −b

a
, αβ = c

a
. (61)

The roots should be α = −2ν − 1 and β = −2ν − 1 + θ . Assume that θ is known exactly
and that we have some a priori estimate α0 for α. Let ε be the error given by α = α0 + ε.
Then β = α0 + θ + ε = β0 + ε. We substitute this into (61), drop the term of order ε2 in the
equation αβ = c/a and then eliminate ε to obtain

a
(
α2

0 + β2
0

)
+ b(α0 + β0) + 2c = 0. (62)

We add this equation to those determining our differential approximant, thereby forcing the
two confluent exponents to be different by θ to within O(ε2). In practice, this method is found
to work extremely well and is quite insensitive to the value of the biased exponent. For d = 3,
we take α0 to be given by ν = 0.5877 or ν = 0.59, and then we use the differential approximant
to obtain a refined estimate of ν. Such variations in the choice of α0 were observed to result
in negligible differences in exponent estimates. For fixed ν, deviations in the observed versus
the biased value of θ almost always occur in the fourth decimal place or later.

For d � 5, we have the luxury of knowing that ν = 1/2, so we can bias for the dominant
exponent, and the other root allows us to determine the value of θ .

5.2. The method of Zinn-Justin

The ratio method of Zinn-Justin [62, 63] is a nonlinear sequence extrapolation method and
may be adapted to take into account leading corrections to scaling as follows. Given a series
an one constructs a set of unbiased estimates for the critical point and critical exponent on a
loose-packed lattice via the relations

sn = −
(

log
anan−4

a2
n−2

)−1

, (63)

s̄n = 1

2
(sn + sn−1), (64)

γ u
n = 1 + 2

s̄n + s̄n−2

(s̄n − s̄n−2)2
, (65)

µn =
(

anan−1

an−2an−3

)1/4

exp

(
− s̄n + s̄n−2

2s̄n(s̄n − s̄n−2)

)
(66)
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(reproduced from [26]). As discussed, for example, by Campostrini et al [5], one then
expects that the leading correction to µn is of order 1/n1+θ , while for the exponent the
leading correction is of order 1/nθ . This correction can be removed by linearly extrapolating
consecutive estimates to obtain a new sequence of unbiased estimates for µ and the exponent.

5.3. The method of direct fitting

The presumed asymptotic form (53) leads to the formulae

log cn ∼ n log µ + (γ − 1) log n + log A +
q0

nθ
+

q1

n
+

q2

n1+θ
+ · · ·

+ (−1)nnα−γ−1
(
r0 +

r1

nθ
+

r2

n
+

r3

n1+θ
+ · · ·

)
, (67)

cn/cn−1 ∼ µ

(
1 +

γ − 1

n
+

q0

n1+θ
+

q1

n2
+

q2

n2+θ
+ · · ·

)

+ µ(−1)nnα−γ−1
(
r0 +

r1

nθ
+

r2

n
+

r3

n1+θ
+ · · ·

)
, (68)

cn/cn−2 ∼ µ2

(
1 +

2(γ − 1)

n
+

q0

n1+θ
+

q1

n2
+

q2

n2+θ
+ · · ·

)

+ µ2(−1)nnα−γ−2
(
r0 +

r1

nθ
+

r2

n
+

r3

n1+θ
+ · · ·

)
, (69)

where qi and ri are permitted to differ from one form to the next. Similar formulae can be
derived from (54) and (55). We truncate these series at some finite order and determine the
unknown quantities as the best fit to a set of linear equations.

This gives unbiased estimates of the critical point, exponent and amplitude. It is possible
to form biased estimates by fixing the value of either the growth constant or the exponent, but
except when the exponent (for d � 4) or the growth constant (ρ̄n series) is known exactly our
preference is to use unbiased estimates to avoid the necessity of using stability as a criterion to
distinguish between different biased estimates. On the other hand, we do use a biased value of
α − γ in the anti-ferromagnetic term (or α − γ − 2ν for ρ), but in practice this is unimportant
for the overall fit, since the anti-ferromagnetic terms are dominated by the leading correction
to scaling for the ferromagnetic part.

The asymptotic form for log cn has the advantage that it also gives estimates for the
amplitude. The ratio cn/cn−1 has the disadvantage that the anti-ferromagnetic term is enhanced
compared to cn/cn−2, leading to stronger odd–even oscillation. This was observed to be of
little significance because the magnitude of the contribution of the anti-ferromagnetic terms
to the asymptotic form remains small in comparison to the ferromagnetic terms. In practice, it
was found that the cn/cn−2 form produces estimates which have greater shifts as the number
of terms in the fitting form are increased, for fixed n, which suggests that the coefficients in
this asymptotic expansion are larger compared to those in the log cn and cn/cn−1 asymptotic
expansions.

Our method is to fit the asymptotic forms using as many terms in the expansion as possible,
until fits become unstable. We do this by starting with the bare minimum of terms, e.g., in
the log cn expansion we begin with n log µ, (γ − 1) log n and log A, and successively add
terms, choosing whether to add a term from the ferromagnetic or anti-ferromagnetic parts by
looking at the stability of estimates. In practice, this meant alternately adding terms from the
anti-ferromagnetic and ferromagnetic parts to minimize odd–even oscillations. We note that
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Figure 6. Estimates for γ for d = 3 from fit of log cn with highest-order terms {q1, r2} for different
values of δn, where δn = 0.69 minimizes �2.

there are frequently still some residual odd–even oscillations in the fits, and as we regard this
oscillation as an artifact of fitting the series with a finite number of terms, we often average
adjacent estimates to obtain a smoothed sequence of estimates.

When performing the log cn fit with the first neglected term of order 1/nξ , we can expect
that for sufficiently large n the truncation error ε(n) will be of the same order. Then the error
in µ is of order 1/nξ+1, the error in γ is of order 1/nξ and the error in the amplitude is of order
1/nξ . If the asymptotic form is correct, one expects that a plot of µ (respectively γ , A) versus
x = 1/nξ+1 (resp. 1/nξ ) would be linear as x → 0 and approach the axis with non-zero slope.
We perform the extrapolations by doing an unweighted linear least-squares fit of the last five
estimates versus the appropriate choice of 1/nξ+1 or 1/nξ .

We then seek to improve the extrapolations by using the technique of a fixed small ‘shift’
δn in n (see section II.A of [18]). We choose δn to minimize

�2 = n2
4∑

i=0

(µn−i − µ̄)2 +
4∑

i=0

(γn−i − γ̄ )2, (70)

where µn−i is the δn-dependent estimate for µ resulting from the coefficients up to order n− i,
and µ̄ is the average of µn, . . . , µn−4. The details of this choice of � are not important, as
any sensible choice will result in much the same outcome. For almost all of the cases studied
there is a clear global minimum at a value of δn which is small compared to the maximum
value of n and no other local minima. This choice of δn effectively minimizes the rate of
change of the estimates of µ, γ and A. There is no guarantee that this will simultaneously
minimize the error ε(n), but it does make it easier to extrapolate the estimates to n → ∞,
particularly if dε/dn ≈ 0 in which case the final estimates become our unbiased estimates.

In figure 6 one can see that estimates do change as δn shifts, but only by relatively small
amounts in the vicinity of the maximally stable value. As a test case, we also applied the
method of direct fitting to the ρ̄n series for d = 3 without biasing for zc = 1. We find that our
choice of the shift δn significantly enhances convergence of estimates of zc to the exact value
zc = 1 and that the direct fitting procedure is superior by an order of magnitude as compared
to the Zinn-Justin and differential approximant methods.
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Table 1. Differential approximants for cn.

Second-order DA Third-order DA

N µ γ U/T µ γ U/T

21 4.683 846(51) 1.161 98(47) 35/45 4.683 831(56) 1.162 13(53) 76/87
22 4.683 920(43) 1.161 25(47) 40/44 4.683 87(11) 1.161 4(11) 88/99
23 4.683 921(22) 1.161 19(34) 41/44 4.683 904(45) 1.161 31(59) 76/104
24 4.683 927(16) 1.161 12(25) 37/45 4.683 890(38) 1.161 57(39) 74/107
25 4.683 931(58) 1.160 92(97) 38/44 4.683 937(69) 1.160 6(11) 76/113
26 4.683 974(33) 1.160 24(78) 42/44 4.684 017(41) 1.159 0(12) 98/116
27 4.683 999(55) 1.159 4(14) 40/45 4.684 017(32) 1.159 07(96) 90/114
28 4.683 997(34) 1.159 73(94) 39/44 4.684 022(13) 1.159 01(47) 96/111
29 4.684 038(21) 1.158 42(86) 37/44 4.684 0182(45) 1.159 16(16) 90/114
30 4.684 019(33) 1.1591(15) 44/45 4.684 0224(53) 1.159 00(21) 110/116

To gauge the accuracy of the results of the direct fits, it is clear that the spread among
estimates of the same order is a lower bound on the uncertainty. If estimates from the fits
are converging sufficiently rapidly as the order is increased, then the jump from the second
highest-order fit to the highest-order fit may give some idea of the size of the uncertainty.
Therefore, the recipe we use to analyze series via this procedure is to find the highest-order
stable fits, exclude those fits which appear to be converging anomalously slowly and take the
mean of the reliable fits as our central estimate. We then calculate the mean of the jumps from
the second highest-order fits to the highest-order fits and quote this value to give some idea
of the accuracy of our central estimate. We do not claim that this is a rigorous procedure, nor
that this should in any way be interpreted as a statistical error estimate.

6. Analysis of series: results

In this section, we analyze the series for cn, ρn, ρ̄n and pn, using the methods discussed in
section 5. We first consider the important case d = 3 at length, then d � 4 and finally we
analyze the 1/d expansion for µ. We used multiple precision floating point computations via
the GMP bignum library to ensure numerical robustness.

6.1. Analysis for d = 3

We first analyze the series on the cubic lattice Z3 for cn, for ρn and ρ̄n, and for pn.

6.1.1. Analysis of the series cn. The method of differential approximants. In table 1, we give
estimates for µ and γ from second- and third-order unbiased differential approximants, where
the value in parentheses is the standard deviation of the estimates after we have pruned away
outliers. The number of approximants utilized to obtain the estimates is U, while T is the total
number of approximants including the excluded outliers. The results of table 1 reveal that the
estimates for µ (γ ) still have an upwards (downwards) trend as N increases. The third-order
approximants suggest a value µ in the vicinity of 4.684 02 and γ near 1.1590, but given that
the second-order approximants have not settled down we believe this apparent convergence to
be spurious and expect that systematic shifts in µ and γ will continue.

The method of Zinn-Justin. We suppose first that θ = 0.5; later we will see how estimates
change under variation in θ . Application of the method of Zinn-Justin gives estimates
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Table 2. Smoothed coefficients in asymptotic expansion of log cn with θ = 0.5.

N µ γ A q0 q1 r0 r1 r2

21 4.684 0569 1.156 53 1.218 59 −0.0693 0.0304 −0.0641 −0.0337 0.0211
22 4.684 0526 1.156 67 1.217 73 −0.0676 0.0288 −0.0643 −0.0316 0.0166
23 4.684 0343 1.157 09 1.215 20 −0.0628 0.0250 −0.0645 −0.0299 0.0131
24 4.684 0385 1.156 99 1.215 77 −0.0639 0.0259 −0.0646 −0.0292 0.0113
25 4.684 0356 1.157 07 1.215 34 −0.0630 0.0252 −0.0646 −0.0287 0.0102
26 4.684 0364 1.157 05 1.215 45 −0.0632 0.0253 −0.0647 −0.0283 0.0094
27 4.684 0371 1.157 02 1.215 62 −0.0636 0.0257 −0.0647 −0.0279 0.0085
28 4.684 0375 1.157 01 1.215 66 −0.0637 0.0257 −0.0648 −0.0275 0.0075
29 4.684 0376 1.157 01 1.215 71 −0.0638 0.0259 −0.0648 −0.0271 0.0064
30 4.684 0381 1.156 99 1.215 79 −0.0639 0.0260 −0.0648 −0.0267 0.0053

Table 3. Smoothed coefficients in asymptotic expansion of cn/cn−1 with θ = 0.5.

N µ γ q0 q1 r0 r1 r2

21 4.684 0409 1.157 07 0.0307 −0.0279 −0.1292 −0.0559 0.0168
22 4.684 0379 1.157 17 0.0301 −0.0268 −0.1295 −0.0527 0.0101
23 4.684 0230 1.157 51 0.0281 −0.0237 −0.1298 −0.0503 0.0049
24 4.684 0280 1.157 39 0.0288 −0.0248 −0.1299 −0.0495 0.0030
25 4.684 0272 1.157 41 0.0287 −0.0247 −0.1300 −0.0491 0.0023
26 4.684 0287 1.157 37 0.0290 −0.0251 −0.1300 −0.0490 0.0020
27 4.684 0308 1.157 31 0.0294 −0.0258 −0.1300 −0.0488 0.0014
28 4.684 0316 1.157 28 0.0295 −0.0261 −0.1300 −0.0484 0.0005
29 4.684 0326 1.157 25 0.0298 −0.0266 −0.1301 −0.0480 −0.0006
30 4.684 0335 1.157 22 0.0299 −0.0269 −0.1301 −0.0475 −0.0017

of µ = 4.684 024 and µ = 4.684 033 for the odd and even subsequences, respectively,
both of which are slowly increasing with N. The exponent estimates are γ = 1.157 04 and
γ = 1.157 03, both estimates slowly decreasing with N.

The method of direct fitting. For direct fitting, we found for each form that the highest-order
fits for which smoothly changing values were observed for all coefficients have highest-order
terms q1 and r2. We again suppose first that θ = 0.5 and consider alternate possibilities for θ

afterward.
Tables 2–4 show the highest-order fits for log cn, cn/cn−1 and cn/cn−2. All estimates are

extremely stable, suggesting that the fitting forms of equations (67)–(69) are basically correct.
In particular, we regard the r2 estimates in table 3 as stable because the absolute values of
successive estimates are similar and close to zero, and it is absolute rather than relative changes
in value that are important, as coefficients may be genuinely close to zero.

We extrapolate the estimates from tables 2–4, as well as the estimates from the lower-order
fits. This information is summarized in table 5 and shown graphically for the highest-order
fits in figures 7–9. The most important features of table 5 are that the estimates for the log cn

and cn/cn−1 fits seem to be converging quite rapidly, as the jumps from the {q0, r1} to the
{q1, r2} fits appear quite small. The final jumps for the cn/cn−2 fit are somewhat larger, which
suggests that the coefficients in the asymptotic expansion for cn/cn−2 are perhaps larger; if the
coefficients are uniformly larger than those for the other fits then we would expect the cn/cn−2

estimates to be less accurate.
We exclude the cn/cn−2 fits and follow the procedure of section 5.3 to obtain the estimates

in table 13 for µ, γ and A.
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Table 4. Smoothed coefficients in asymptotic expansion of cn/cn−2 with θ = 0.5.

N µ γ q0 q1 r0 r1 r2

21 4.683 9688 1.159 06 0.0352 −0.0178 0.2541 0.0826 −0.0150
22 4.684 0099 1.158 16 0.0450 −0.0330 0.2427 0.1768 −0.2080
23 4.684 0051 1.158 27 0.0436 −0.0308 0.2447 0.1587 −0.1687
24 4.684 0037 1.158 30 0.0433 −0.0303 0.2482 0.1282 −0.1018
25 4.684 0086 1.158 18 0.0449 −0.0329 0.2493 0.1183 −0.0799
26 4.684 0114 1.158 10 0.0458 −0.0345 0.2497 0.1145 −0.0709
27 4.684 0151 1.157 99 0.0472 −0.0370 0.2495 0.1168 −0.0768
28 4.684 0183 1.157 90 0.0484 −0.0392 0.2491 0.1205 −0.0853
29 4.684 0206 1.157 82 0.0494 −0.0410 0.2490 0.1216 −0.0883
30 4.68 40228 1.157 75 0.0503 −0.0428 0.2489 0.1225 −0.0903

Table 5. Estimates of µ, γ and A from direct fits.

log cn cn/cn−1 cn/cn−2
Highest
order terms µ γ A µ γ µ γ

{r0} 4.683 8981 1.161 73 1.186 03 4.683 9027 1.161 66 4.683 9099 1.161 47
{q0, r1} 4.684 0363 1.157 08 1.215 13 4.684 0307 1.157 34 4.684 0191 1.157 89
{q1, r2} 4.684 0417 1.156 79 1.217 08 4.684 0444 1.156 61 4.684 0496 1.156 29

We can also obtain a range of estimates for γ by exploiting the approximately linear
relationship between γ and µ, as shown in figure 10. Note that the biased estimates for the
different asymptotic forms are much closer together than the corresponding unbiased estimates.
Ignoring the small amount of scatter between the different estimates at fixed µ we can draw a
sensible line of best fit and convert the range of estimates for µ of 4.684033 � µ � 4.684053
to a corresponding range for γ of 1.1561 � γ � 1.1571. This agrees very closely with the
results of table 13.
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6.1.2. Analyses of the series ρn and ρ̄n. We used differential approximants and direct fitting.
The Zinn-Justin method was not found to produce useful numerical results in the analysis of
ρ̄n, because it does not utilize the fact that zc = 1 is known exactly. We again assume first that
θ = 0.5 and consider the effect of possible variation in the value of θ afterward.

The method of differential approximants. We first applied the method of differential
approximants to the ρn series, and as for the cn series we find that the resulting estimates
are still undergoing large systematic shifts. Indeed, the estimates are still some way from the
expected value of µ ≈ 4.684 043, suggesting that confluent corrections are larger for the ρn

series. The analysis of the ρ̄n series is more fruitful since we can bias for the known value
zc = 1 and easier to interpret because we calculate ν directly rather than γ + 2ν.

We first applied the method of differential approximants biased for zc = 1 to the ρ̄n

series and report the results in table 6. We see that the estimates are still undergoing large
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Table 6. Biased differential approximants for ρ̄n.

Second-order DA Third-order DA

N ν U/T ν U/T

21 0.593 3(28) 35/42 0.592 2(81) 46/46
22 0.592 12(99) 38/43 0.590 8(35) 51/58
23 0.592 30(63) 43/44 0.591 92(46) 63/68
24 0.592 07(35) 41/45 0.592 12(38) 70/78
25 0.591 91(39) 36/44 0.591 81(17) 75/90
26 0.591 579(94) 36/44 0.591 46(32) 93/99
27 0.591 38(32) 44/45 0.591 58(75) 100/104
28 0.591 0(17) 42/44 0.591 03(91) 98/107
29 0.590 80(45) 40/44 0.590 1(11) 108/113
30 0.590 92(59) 41/45 0.590 58(88) 110/116

systematic shifts and are a long way from the Monte Carlo and field theory estimates (see
section 7.1). When we bias for the confluent exponent of θ = 0.5 in table 7 we find much
better agreement and apparently striking convergence to the value of ν = 0.587 43 from the
second-order differential approximants. We take ν = 0.5874 as our central estimate from
the differential approximant analysis, with no estimated range because we cannot anticipate
higher-order systematic shifts.

We found that the majority of the second-order approximants and many of the third-order
approximants which do not allow for a confluent correction are defective due to singularities
on the positive axis in the vicinity of the critical point. In contrast, relatively few of the
approximants with a biased confluent exponent are defective.

The method of direct fitting. Direct fits for ρn are useful for confirming our previous estimates
for µ as shown graphically in figure 11 and directly estimating the amplitude AD in table 11.

For ρ̄n, we found that the highest-order fit with smoothly changing values is {q2, r2}—
biasing the critical point has allowed us to smoothly fit an additional term in the ferromagnetic
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Table 7. Differential approximants for ρ̄n, with θ = 0.5.

Second-order DA Third-order DA

N ν U/T ν U/T

21 0.589 3(23) 35/42 0.585 0(22) 32/33
22 0.588 1(14) 36/43 0.586 1(14) 40/46
23 0.587 68(93) 38/44 0.585 82(52) 50/58
24 0.588 05(40) 40/45 0.585 7(15) 58/68
25 0.587 76(45) 43/44 0.588 1(40) 74/78
26 0.587 61(18) 39/44 0.587 24(87) 78/90
27 0.587 47(21) 43/45 0.586 98(58) 93/99
28 0.587 43(42) 44/44 0.587 02(66) 98/104
29 0.587 433(91) 42/44 0.587 25(40) 90/107
30 0.587 434(90) 43/45 0.587 56(32) 105/113

series, compared to the direct fits of the cn series. We show the highest-order fits for ρ̄n in
tables 8–10, in which all coefficients are very stable over the full range of n. In table 11, we
observe rapid convergence for ν as the order of the fit is increased. We use all of the fits and
follow the procedure of section 5.3 to obtain the estimates in table 13 for ν and D. We may
also multiply the upper and lower bounds of the estimates for A and D to obtain an estimate
of AD = 1.4883(60), which is compatible with, but more accurate than, the direct estimate
from the {q1, r1} fit of the ρn series of 1.4794.

6.1.3. Analysis of the series p2n. The series for p2n is only half as long as the series for cn

and ρn. For d = 2, there is the advantage that non-analytic corrections to scaling fold into
the analytic background term, thus resulting in a particularly simple asymptotic form [40].
No such simplification occurs for d = 3, although it does appear from the direct fits that the
non-analytic confluent correction terms have small coefficients.

We first apply the method of differential approximants; with a short series the best results
are obtained with first-order approximants. These approximants give estimates for µ2 and α

which have large error bars and are not enlightening. If instead we bias the critical point, we
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Table 8. Coefficients in asymptotic expansion of log ρ̄n with θ = 0.5.

N ν D q0 q1 q2 r0 r1 r2

21 0.587 27 1.226 63 −0.3628 −0.1352 −0.3395 0.0645 0.0289 −0.0268
22 0.587 38 1.224 88 −0.3571 −0.1475 −0.3277 0.0646 0.0278 −0.0246
23 0.587 48 1.223 30 −0.3522 −0.1579 −0.3179 0.0647 0.0267 −0.0222
24 0.587 47 1.223 36 −0.3523 −0.1579 −0.3178 0.0648 0.0261 −0.0208
25 0.587 50 1.222 90 −0.3508 −0.1612 −0.3146 0.0648 0.0257 −0.0198
26 0.587 50 1.222 94 −0.3509 −0.1609 −0.3148 0.0649 0.0254 −0.0191
27 0.587 50 1.222 96 −0.3510 −0.1607 −0.3151 0.0649 0.0251 −0.0184
28 0.587 50 1.222 93 −0.3509 −0.1610 −0.3146 0.0649 0.0248 −0.0177
29 0.587 50 1.222 93 −0.3509 −0.1610 −0.3148 0.0650 0.0245 −0.0169
30 0.587 50 1.222 92 −0.3508 −0.1612 −0.3145 0.0650 0.0241 −0.0161

Table 9. Coefficients in asymptotic expansion of ρ̄n/ρ̄n−1 with θ = 0.5.

N ν q0 q1 q2 r0 r1 r2

21 0.587 30 0.1802 0.1884 0.5438 0.1303 0.0420 0.0126
22 0.587 41 0.1773 0.2007 0.5268 0.1304 0.0413 0.0141
23 0.587 50 0.1751 0.2098 0.5140 0.1305 0.0402 0.0163
24 0.587 50 0.1750 0.2103 0.5132 0.1306 0.0400 0.0168
25 0.587 52 0.1744 0.2129 0.5093 0.1306 0.0400 0.0169
26 0.587 53 0.1744 0.2130 0.5092 0.1306 0.0401 0.0165
27 0.587 52 0.1745 0.2123 0.5102 0.1305 0.0402 0.0163
28 0.587 52 0.1744 0.2128 0.5094 0.1305 0.0402 0.0163
29 0.587 52 0.1745 0.2124 0.5102 0.1306 0.0402 0.0165
30 0.587 52 0.1745 0.2126 0.5097 0.1306 0.0400 0.0168

Table 10. Coefficients in asymptotic expansion of ρ̄n/ρ̄n−2 with θ = 0.5.

N ν q0 q1 q2 r0 r1 r2

21 0.587 56 0.3467 0.6716 1.1038 −0.2605 −0.0202 0.0328
22 0.587 38 0.3553 0.6377 1.1482 −0.2491 −0.1113 0.2148
23 0.587 48 0.3502 0.6592 1.1185 −0.2486 −0.1150 0.2214
24 0.587 53 0.3478 0.6694 1.1041 −0.2503 −0.1007 0.1913
25 0.587 54 0.3470 0.6727 1.0991 −0.2506 −0.0975 0.1842
26 0.587 55 0.3463 0.6757 1.0948 −0.2511 −0.0937 0.1758
27 0.587 55 0.3464 0.6753 1.0954 −0.2508 −0.0956 0.1802
28 0.587 55 0.3465 0.6751 1.0956 −0.2506 −0.0979 0.1856
29 0.587 55 0.3465 0.6751 1.0957 −0.2504 −0.0999 0.1904
30 0.587 55 0.3465 0.6747 1.0963 −0.2503 −0.1012 0.1936

Table 11. Estimates of ν, D and AD from direct fits with θ = 0.5.

log ρ̄n
Highest log ρn ρ̄n/ρ̄n−1 ρ̄n/ρ̄n−2

order terms AD ν D ν ν

{q0, r0} 1.429 61 0.588 75 1.202 17 0.588 78 0.588 71
{q1, r1} 1.479 43 0.587 54 1.219 91 0.587 61 0.587 78
{q2, r2} 0.587 51 1.222 82 0.587 52 0.587 54
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Table 12. Biased estimates for α from first-order DA.

µ = 4.684 02 µ = 4.684 04 µ = 4.684 06

N α U/T α U/T α U/T

24 0.242(28) 10/10 0.241(28) 10/10 0.241(28) 10/10
26 0.230(11) 13/13 0.229(11) 13/13 0.229(11) 13/13
28 0.232 5(16) 13/14 0.232 1(16) 13/14 0.231 7(16) 13/14
30 0.232 51(56) 15/15 0.232 08(54) 15/15 0.231 66(53) 15/15
32 0.232 51(18) 15/15 0.232 02(16) 15/15 0.231 53(13) 15/15

Table 13. Estimates of parameters for d = 3 from direct fits with θ = 0.5. These are intermediate
results which do not yet take into account variation in θ , a dominant source of uncertainty.

µ γ ν A D

4.684 0431(96) 1.156 70(51) 0.587 52(12) 1.2171(20) 1.2228(29)

obtain quite tight results for α as shown in table 12. Indeed, with values for µ in quite a large
range it seems that the estimates for α are settling down to a value of 0.232. If taken at face
value, this would imply that hyperscaling is violated, i.e. dν �= 2 − α. However, as was seen
in the analysis for the cn, ρn and ρ̄n series, it is clear that misleading conclusions can be drawn
if the effect of confluent corrections are not factored in. It is difficult to do so with such a short
series.

Direct fits are also not revealing: it is not possible to get good unbiased estimates of µ2

and α; when a biased value of µ is used it is possible to fit for a confluent correction with
exponent θ , and an analytic correction, but the convergence is not very good and we do not
quote these results here. They suggest that α is in the range of 0.23–0.24, consistent with
hyperscaling, but without a longer series not much more can be said with confidence.

6.1.4. Effect of variation in θ . Table 31 of [55] reports a wide range of estimates for θ , from
a low of 0.46–0.50 from various field theory estimates to a high of 0.56(3) from the Monte
Carlo estimate of [45]. It is therefore important that we repeat the above analysis to quantify
the dependence on θ of our estimates for µ, γ , A, ν, D.

The results for µ, γ, ν are shown in figures 12–14, with the central estimates given the
label ‘Best’. It is apparent from the figures that the estimates depend approximately linearly
on the value of θ used, and we observed similar linear behavior for A and D. Our method
of producing error estimates gives comparable results as θ is varied, and given that this error
estimate is subjective in any case we take the uncertainties to be constant. The results can be
succinctly summarized by the linear least-squares fits to the central estimates:

µ(θ) = 4.684 0431 − 0.000 0394(θ − 0.5) ± 0.000 01 (71)

γ (θ) = 1.156 690 + 0.006 779(θ − 0.5) ± 0.0005 (72)

A(θ) = 1.217 23 − 0.063 79(θ − 0.5) ± 0.002 (73)

ν(θ) = 0.587 506 + 0.008 324(θ − 0.5) ± 0.000 12 (74)

D(θ) = 1.223 30 − 0.197 43(θ − 0.5) ± 0.003. (75)
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Figure 13. Estimates for γ from {q1, r2} direct fits and the method of Zinn-Justin, plotted versus
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We show these lines in figures 12–14, and it is clear that the fit is excellent in each case.
If we adopt a range of θ1 � θ � θ2, we then convert this to a range, e.g., for µ of
µ(θ2) − 0.000 01 � µ � µ(θ1) + 0.000 01.

We note in passing that the ‘shift’ δn is insensitive to changes in θ , for example in the fit
for log cn with corrections to order 1/n, δn only changes from 0.709 to 0.715 as θ is varied
from 0.47 to 0.53. For this reason we can use a single value of δn.

6.2. Analysis for d = 4

The series in d = 4 require particular attention because of the logarithmic corrections:

cn ∼ Aµn(log n)1/4, ρ̄n ∼ Dn(log n)1/4. (76)

Confluent corrections of the form log log n/log n have been elucidated by Duplantier [13].
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The method of differential approximants. Unbiased differential approximants cannot take into
account the logarithmic confluent correction, but nevertheless give useful estimates. Second-
and third-order inhomogeneous approximants give µ = 6.7737 ↑ (trending upwards) and
γ = 1.046 ↓ (trending downwards). Biasing γ = 1 by performing a linear fit in the plot of
zc versus γ , as described below equation (57), gives worse results, suggesting µ = 6.777 ↓;
this is probably because the unbiased approximants take into account the leading logarithmic
correction via an effective exponent. Nonetheless, it appears that the unbiased and biased
estimates bracket the correct value of µ (we find this to be the case for dimensions 4 � d � 7),
and so we take the mean and estimate the uncertainty from the spread of the two estimates.

The method of Zinn-Justin. Naive application of this method, which does not take into account
the logarithmic confluent correction, gives µ = 6.77363 ↑ if we take θ = 1 as indicated by
the direct fits.

The method of direct fitting. Direct fitting works extremely well when the logarithmic
correction is taken into account. This results, for example, in a log log term for the log cn

fitting form and works much better when treated as an effective exponent, rather than biased
to have a coefficient of 1/4. The effective exponent of log n from the fits for cn was 0.213,
while from the fits for ρ̄n we obtain 0.326.

It was found that including the explicit log log n/log n correction did not improve the
quality of the fits (Grassberger et al [20] do take this correction into account in their Monte
Carlo work). For the correction to scaling exponent, the fits make it clear that θ �= 0.5, and
taking θ = 1 gives excellent fits. We take the next correction for the ferromagnetic part to
be O(1/n2); using a correction of O(1/n3/2) results in fits which are almost as stable and
yields similar estimates. For the anti-ferromagnetic part we assume that corrections are in
increments of 0.5. This assumption results in very acceptable fits for the coefficients in the
anti-ferromagnetic part, but it is also true that the estimates we are interested in are essentially
the same for any reasonable choice of asymptotic form because the ferromagnetic singularity
dominates. We use {q1, r3} and {q2, r3} fits for cn, {q1, r2} and {q2, r3} fits for ρ̄n.
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We do not have much confidence in our estimates for A and D due to the difficulty
of distinguishing the constant term from the log log term for log cn, and the possibility of
sub-dominant logarithmic corrections which are not accounted for by the asymptotic form.

6.3. Analysis for d > 4

For d > 4, the results of [34] provide rigorous proof that for finite-range spread-out models
cn = Aµn[1+O(n−(d−4)/2)] and ρ̄n = Dn[1+O(nδ)] for any δ < min

{
1, d−4

2

}
. The n−(d−4)/2

correction to scaling for cn was first predicted by Guttmann [24] via a renormalization group
argument. We assume that universality holds and use θ = d−4

2 for cn and θ = min
{
1, d−4

2

}
for ρ̄n (for d = 6, we find evidence of a logarithmic correction for ρ̄n). Further corrections
in increments of 0.5 are used and result in extremely stable fits in all dimensions. For the
anti-ferromagnetic term we take the leading correction as θ = 0.5, with further corrections in
increments of 0.5. This results in stable estimates for the anti-ferromagnetic coefficients, but
it should be noted that the choice of fitting form for the anti-ferromagnetic part is not crucial
as estimates for µ, A and D are quite insensitive to this choice.

Our analysis follows the broad outlines discussed above for d = 3, 4 and below we
mention some key points for each dimension. Our results are summarized in table 15.

d = 5. Differential approximant analyses of the ρ̄n series provide convincing numerical
evidence that θ = 0.5. Direct fits and the method of Zinn-Justin confirm θ = 0.5 for both cn

and ρ̄n. We use {q1, r1} and {q2, r2} fits for cn, {q2, r2} and {q3, r2} fits for ρ̄n.

d = 6. For the method of Zinn-Justin we obtain good results using θ = 1. The direct fits
confirm that the leading correction for cn does not include a log n/n term. For ρ̄n, the direct
fits give evidence of log n/n and 1/n corrections, but we only fit the dominant log n/n part as
the fit is not improved when 1/n is included. For cn we use {q1, r1} and {q2, r2} fits, while for
ρ̄n we use {q2, r1} and {q3, r2} fits.

d = 7. The direct fits and the method of Zinn-Justin confirm the absence of a 1/n term for cn

and the presence of this term for ρ̄n. For cn we use {q1, r1} and {q2, r2} fits, while for ρ̄n we
use {q2, r1} and {q3, r2} fits.

d = 8. Biased and unbiased differential approximant estimates no longer bracketed the
accurate Monte Carlo estimate for µ [54]. Biasing the exponent as discussed below
equation (57) gave estimates that were far more stable and hence these were used to obtain
the central estimate and uncertainty. Direct fits and the method of Zinn-Justin clearly confirm
that the leading correction is 1/n2 for cn. Direct fits show the presence of the 1/n term for
ρ̄n; from the fits nothing definitive can be said as to the nature of the next correction, and in
particular could not distinguish between log n/n2 and 1/n2 corrections. We used 1/n2, but
the two choices gave very similar numerical results. For cn we use {q1, r1} and {q2, r2} fits,
while for ρ̄n we use {q2, r1} and {q3, r2} fits.

6.4. Analysis of the 1/d series

We obtain estimates from the 1/d expansions of equations (1), (3) and (4), via truncation and
Padé–Borel resummation [43]. We found that changing the expansion variable to 2d − 1, as
appears, e.g., in Fisher and Gaunt [14], makes no appreciable difference for either method.

For truncation, we have used the rule of thumb that an asymptotic series should be
truncated before its smallest term and then half of the smallest term should be added or all
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Table 14. Estimates of parameters for d = 3. Our direct fit estimates using cn and ρ̄n with n � 30
are reported in the top two lines.

µ γ ν A D

0.47 � θ � 0.5 4.684 044(11) 1.156 6(6) 0.587 4(2) 1.218(3) 1.226(6)
0.47 � θ � 0.56 4.684 043(12) 1.156 8(8) 0.587 6(5) 1.216(5) 1.220(12)
[47] n � 26 (2000) 4.684 04(9) 1.158 5 0.587 55 1.205 1.225
[46] n � 23 (1992) 4.683 869(22) 1.161 93(10)
[27] n � 21 (1989) 4.683 93(9) 1.161(2) 0.592(3)
[36] MC (2004) 4.684 038(6)
[37] MC (2004) 1.157 3(2)
[57] MC (2001) 0.587 4(2)
[6] MC (1998) 1.157 5(6)
[2] MC (1997) 0.587 56(5)
[45] MC (1995) 0.587 7(6)
[21] FT d = 3 (1998) 1.159 6(20) 0.588 2(11)
[21] FT ε (1998) 1.157 5(60) 0.587 5(25)
[21] FT ε bc (1998) 1.157 1(30) 0.587 8(11)

terms should be utilized if they decrease uniformly; we do not take these values very seriously.
For Padé–Borel estimates we use diagonal Padé approximants, and Cauchy principal value
integration when there are spurious singularities on the positive real axis. The uncertainties
were obtained by subjective consideration of the spread of estimates.

7. Analysis of series: conclusions

7.1. Estimates of critical parameters

Our results are summarized in tables 14 and 15.

Error estimation. To quote Guttmann [26] on error estimation in series analysis, ‘The question
of error estimates is a vexed one.’ Also, ‘error bounds are generally referred to as (subjective)
confidence limits, and as such frequently measure the enthusiasm of the author rather than
the quality of the data.’ We are only too aware of the fact that the estimation of errors in
our analysis is not a rigorous science and have tried to temper our enthusiasm. There is little
doubt that our n � 30 series for d = 3 have still not reached their asymptotic regimes, and
our analyses may very well still be subject to unknown systematic shifts—our situation is far
from the luxury of the long series available for the square lattice [40, 41].

We have already discussed our method of error estimation for direct fits, at the end of
section 5.3. To reiterate, for the direct fits the values in parentheses are not statistical error
estimates and should not be read as such. For the cn fits, the central value is the mean of
the log cn, cn/cn−1 and cn/cn−2 fits (except for d = 3 where we disregard the cn/cn−2 fit),
and the value in parentheses is the mean of the jumps from the second highest-order fit to the
highest-order fit. This is a purely mechanical process, which has the significant advantage
that it is independent of the enthusiasm of the authors, but we stress that it does not provide
statistical error estimates. The degree to which these estimates represent the true error depends
upon the nature and size of higher-order corrections which are not and cannot be taken into
account. If these corrections are small, then the values in parentheses give some idea of the
accuracy of the estimate.

For the differential approximant estimates in dimensions 4 � d � 7 we find the mean
value of the estimates for µ from the highest-order approximants (those utilizing at least
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Table 15. Estimates of parameters for d � 4. We use ‘OP’ to indicate Monte Carlo results
of Owczarek and Prellberg [54], ‘DA’ for the method of differential approximants, ‘ZJ’ for the
method of Zinn-Justin, ‘direct’ for the method of direct fitting, ‘1/d T’ for the truncated 1/d

expansion, and ‘1/d PB’ for the 1/d Padé–Borel method. Entries without error indications have
large uncertainties.

d = 4 d = 5 d = 6 d = 7 d = 8

µ (OP) 6.774 043(5) 8.838 544(3) 10.878 094(4) 12.902 817(3) 14.919 257(2)
µ (DA) 6.775 2(16) 8.838 56(21) 10.878 086(12) 12.902 828(16) 14.919 255(5)
µ (ZJ) 6.773 63 ↑ 8.838 72 ↓ 10.878 134 ↓ 12.902 828 ↓ 14.919 261 ↓
µ (direct) 6.774 168(32) 8.838 5451(90) 10.878 0919(21) 12.902 8174(53) 14.919 2552(11)
µ (1/d T) 6.687 8.823 10.8749 12.902 07 14.919 095
µ (1/d PB) 6.78(1) 8.837(3) 10.877 5(20) 12.902 8(2) 14.919 25(10)

A (direct) 1.107 1.277 0(2) 1.158 94(1) 1.114 18(4) 1.090 441(4)
A (1/d T) – 1.204 5 1.166 5 1.115 4 1.090 67
A (1/d PB) – 1.231(3) 1.153 7(10) 1.113 62(15) 1.094 10(15)

D (OP) – 1.476 7(13) 1.294 0(6) 1.218 7(3) 1.176 0(2)
D (direct) 1.035 1.477 22(8) 1.294 52(4) 1.218 78(1) 1.176 177(5)
D (1/d T) – 1.3839 1.302 76 1.220 148 1.176 43
D (1/d PB) – 1.42(1) 1.288(2) 1.218 0(5) 1.176 1(1)

c0, . . . , c22). We also bias the approximant estimates by performing a linear fit of the scatter
plot of γ versus zc for the highest-order approximants and taking the intercept of this line with
γ = 1. For these dimensions the unbiased and biased estimates both have uniform trends as
the order of the approximants are increased and appear to be pinching the correct value for
µ. Hence, we take the mean of the unbiased and biased estimates as our central estimate, and
half the difference is the spread which we give in parentheses. For d = 8 the trend from the
unbiased estimates is less clear, and instead we take the biased estimates, with the value in
parentheses a subjective estimate of the spread of the highest-order biased estimates.

d = 3. The study of self-avoiding walks in three dimensions via direct enumeration and
Monte Carlo methods has a long history, with an equally long history of underestimation of
systematic shifts and hence underestimation of errors in the estimates of critical points and
critical exponents. Much of that history is documented by Li et al [45] and Pelissetto and
Vicari [55]. We compare our results with recent results from direct enumeration, Monte Carlo
and field theory methods in table 14.

Our results are reported using the two possible ranges 0.47 � θ � 0.5 and 0.47 � θ �
0.56. The smaller range is based on field theory estimates reported in table 31 of [55]. The
larger range also encompasses the mid-value of the Monte Carlo estimate θ = 0.56(3) of
[45]; the authors of [45] observe that their estimate may actually be for an effective exponent
influenced by higher-order corrections. Other scenarios for the value of θ can easily be
converted to ranges of estimates via equations (71)–(75).

The most recent enumeration work by MacDonald et al [47] gives an estimate γ = 1.1585,
but cannot rule out γ being elsewhere in the range 1.155 � γ � 1.160. They place
considerably tighter bounds upon ν, with estimates in the range of 0.5870 � ν � 0.5881; we
have reported the midpoint in table 14.

It is apparent from table 14 that the estimates for µ have an upward trend as more
terms have been added to the series. For γ , earlier estimates from direct enumeration are
systematically lower than recent estimates from all sources. A similar trend can be seen in
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table 31 of [55] for the Monte Carlo estimates of ν. This is because earlier analyses neglected
the effect of the leading confluent correction, which resulted in systematic errors in the central
estimates. On some occasions the apparent convergence of one method of series analysis or
another also resulted in overly-optimistic confidence limits.

Our estimate for µ is far more accurate than that from previous enumeration work,
and given that the variance with θ is slight, we adopt the estimate µ = 4.684 043(12)

(0.47 � θ � 0.56) as our final value. Our value of µ is consistent with the Monte Carlo
estimate given in [36]. For the exponents γ and ν our analysis complements and confirms
recent Monte Carlo and field theory estimates. Our estimates are perhaps of comparable
accuracy to the Monte Carlo estimates, but without the rigor of a statistical error estimate.
For this reason we would give the best available Monte Carlo estimates more weight, but our
analysis suggests that γ may well be on the low side of the Monte Carlo range. For ν our
estimate is in accordance with all of the recent Monte Carlo and field theory estimates.

d � 4. Our conclusions for d � 4 are tabulated in table 15. Our best results come from the
direct fits and for d � 5 these agree with the careful Monte Carlo work of Owczarek and
Prellberg [54]. The direct fit estimates for d = 4 are heavily influenced by the logarithmic
correction and the inability to effectively take into account sub-dominant logarithmic terms.
The accuracy of the series analysis estimate of µ for d = 4 has improved significantly since
the estimate µ = 6.7720(5) found 30 years ago by Guttmann [23], due to the availability of
additional coefficients (see also [46] for more recent work).

7.2. Rigorous bounds on the connective constant

It is proved in [1] that µ is bounded above by the unique positive root of

2dxn−1 = (cn − (2d − 2)cn−1)x + (2d − 2)((2d − 1)cn−1 − cn). (77)

The bounds we obtain from this are 4.7552, 6.8251, 8.8671, 10.8949, 12.9137, 14.9270,
16.9368, 18.9443, 20.9502, 22.9549, starting from d = 3, all rounded up. These are not
as good as the upper bounds 4.7387, 6.8179, 8.8602, 10.8886 for dimensions d = 3, 4, 5, 6
[53, 56]. It is erroneously claimed in [47] that c26 gives µ � 4.7114 for d = 3; in fact c26

gives the weaker bound µ � 4.7626 using (77). For rigorous lower bounds, see [12, 33, 58].
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Appendix. Enumeration tables

The following tables give the results of our enumerations of πm,δ, rm,δ, cn, ρn and pn. See [9]
for more extensive tables, also in machine-readable form.
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Table A1. πm,δ .

m δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

4 −1 0 0 0 0 0
5 3 0 0 0 0 0
6 −8 −4 0 0 0 0
7 19 15 0 0 0 0
8 −50 −86 −27 0 0 0
9 121 300 106 0 0 0

10 −305 −1 511 −1 340 −248 0 0
11 736 5 297 5 333 966 0 0
12 −1 853 −25 566 −52 252 −25 020 −2 830 0
13 4 531 91 234 211 403 100 988 10 755 0
14 −11 444 −435 330 −1 907 566 −1 850 364 −515 509 −38 232
15 28 294 1 586 306 7 854 601 7 635 822 2 029 500 141 271
16 −71 803 −7 568 792 −68 777 498 −123 248 980 −64 816 437 −11 448 832
17 179 006 28 105 857 288 074 727 517 006 517 260 695 401 43 562 781
18 −455 588 −134 512 520 −2 498 227 824 −7 899 351 270 −7 074 329 136 −2 259 048 705
19 1 142 357 507 675 751 10 626 960 167 33 569 520 427 28 860 719 280 8 752 861 880
20 −2 914 236 −2 438 375 322 −92 047 793 514 −500 752 577 733 −724 291 034 691 −375 104 500 306
21 7 341 457 9 330 924 963 396 919 882 288 2 150 581 793 271 2 984 307 507 943 1 470 382 570 259
22 −18 768 621 −44 965 008 206 −3 445 692 397 195 −31 789 616 257 271 −72 005 867 458 629 −57 134 966 511 160
23 47 466 002 174 103 216 625 15 035 569 992 917 137 713 940 393 321 298 797 296 949 195 225 664 948 525 652
24 −121 579 349 −841 380 441 626 −130 974 140 581 412 −2 032 548 406 479 564 −7 072 798 632 884 530 −8 310 727 395 423 391
25 308 478 355 3 290 830 791 268
26 −791 455 148 −15 941 476 401 251
27 2 013 666 265 62 897 919 980 935
28 −5 174 044 897 −305 298 415 550 796
29 13 195 280 922 1 213 812 491 872 081
30 −33 949 508 883 −5 901 490 794 431 276
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Table A2. πm,δ .

m δ = 8 δ = 9 δ = 10 δ = 11 δ = 12

16 −593 859 0 0 0 0
17 2 136 990 0 0 0 0
18 −272 284 377 −10 401 712 0 0 0
19 1 002 540 792 36 572 274 0 0 0
20 −79 389 607 706 −6 916 928 958 −202 601 898 0 0
21 296 580 166 041 24 752 523 462 698 531 550 0 0
22 −18 991 828 571 041 −2 845 232 717 076 −187 336 983 764 −4 342 263 000 0
23 71 607 362 439 324 10 298 433 232 362 654 746 926 835 14 729 974 326 0
24 −4 089 518 594 710 646 −940 637 759 037 584 −104 821 777 374 466 −5 399 047 490 020 −101 551 822 350
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Table A3. rm,δ .

m δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7

4 0 0 0 0 0 0
5 3 0 0 0 0 0
6 −2 0 0 0 0 0
7 19 15 0 0 0 0
8 −20 −4 0 0 0 0
9 125 298 106 0 0 0

10 −142 −116 50 0 0 0
11 756 5 293 5 407 966 0 0
12 −908 −1 748 2 596 1 092 0 0
13 4 651 92 352 217 915 103 652 10 755 0
14 −5 866 −20 354 131 382 123 752 17 014 0
15 29 298 1 635 204 8 259 099 8 006 364 2 087 098 141 271
16 −38 772 −151 826 6 388 800 10 689 852 3 502 180 259 148
17 187 890 29 528 009 309 549 227 553 251 595 273 897 083 44 651 913
18 −256 882 1 278 760 296 929 090 833 860 050 497 935 412 86 977 956
19 1 212 409 543 884 539 11 678 266 645 36 649 327 719 30 892 753 566 9 143 099 504
20 −1 697 476 97 253 034 13 365 532 342 61 812 465 594 60 930 016 102 18 995 212 456
21 7 867 353 10 199 601 195 446 192 990 524 2 394 416 093 217 3 249 327 197 509 1 560 447 905 709
22 −11 237 646 3 153 169 354 589 944 786 900 4 460 020 424 324 6 911 804 871 782 3 446 582 798 592
23 51 362 358 194 242 768 721 17 288 192 341 291 156 284 036 525 425 330 519 809 708 571 242 813 958 590 662
24 −74 621 132 84 105 863 986 25 752 215 129 708 317 387 352 958 176 752 352 026 288 734 566 890 329 449 136
25 337 011 419 3 747 592 552 768
26 −496 595 594 2 061 502 580 308
27 2 220 181 989 73 105 694 028 337
28 −3 311 032 564 48 288 532 248 224
29 14 677 154 178 1 439 625 055 822 687
30 −22 116 633 042 1 100 771 160 651 506
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Table A4. rm,δ .

m δ = 8 δ = 9 δ = 10 δ = 11 δ = 12

16 0 0 0 0 0
17 2 136 990 0 0 0 0
18 4 145 208 0 0 0 0
19 1 022 582 952 36 572 274 0 0 0
20 2 101 078 756 71 405 424 0 0 0
21 307 217 748 067 25 128 377 158 698 531 550 0 0
22 666 147 872 258 51 671 531 788 1 337 713 388 0 0
23 75 123 854 243 770 10 580 731 025 256 662 104 401 197 14 729 974 326 0
24 170 927 657 160 212 22 755 445 969 576 1 325 124 449 256 27 337 708 760 0

Table A5. Enumeration results for d = 3.

n pn cn ρn

1 0 6 6
2 0 30 72
3 0 150 582
4 3 726 4 032
5 0 3 534 25 566
6 22 16 926 153 528
7 0 81 390 886 926
8 207 387 966 4 983 456
9 0 1 853 886 27 401 502

10 2 412 8 809 878 148 157 880
11 0 41 934 150 790 096 950
12 31 754 198 842 742 4 166 321 184
13 0 943 974 510 21 760 624 254
14 452 640 4 468 911 678 112 743 796 632
15 0 21 175 146 054 580 052 260 230
16 6 840 774 100 121 875 974 2 966 294 589 312
17 0 473 730 252 102 15 087 996 161 382
18 108 088 232 2 237 723 684 094 76 384 144 381 272
19 0 10 576 033 219 614 385 066 579 325 550
20 1 768 560 270 49 917 327 838 734 1 933 885 653 380 544
21 0 235 710 090 502 158 9 679 153 967 272 734
22 29 764 630 632 1 111 781 983 442 406 48 295 148 145 655 224
23 0 5 245 988 215 191 414 240 292 643 254 616 694
24 512 705 615 350 24 730 180 885 580 790 1 192 504 522 283 625 600
25 0 116 618 841 700 433 358 5 904 015 201 226 909 614
26 9 005 206 632 672 549 493 796 867 100 942 29 166 829 902 019 914 840
27 0 2 589 874 864 863 200 574 143 797 743 705 453 990 030
28 160 810 554 015 408 12 198 184 788 179 866 902 707 626 784 073 985 438 752
29 0 57 466 913 094 951 837 030 3 476 154 136 334 368 955 958
30 2 912 940 755 956 084 270 569 905 525 454 674 614 17 048 697 241 184 582 716 248
32 53 424 552 150 523 386
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Table A6. Enumeration results for d = 4.

n pn cn ρn

1 0 8 8
2 0 56 128
3 0 392 1 416
4 6 2 696 13 568
5 0 18 584 119 960
6 76 127 160 1 009 440
7 0 871 256 8 205 656
8 1 434 5 946 200 65 068 352
9 0 40 613 816 506 193 144

10 32 616 276 750 536 3 879 735 776
11 0 1 886 784 200 29 378 067 080
12 844 432 12 843 449 288 220 265 711 040
13 0 87 456 597 656 1 637 726 387 096
14 23 919 864 594 876 193 016 12 091 336 503 584
15 0 4 047 352 264 616 88 727 095 777 896
16 723 317 892 27 514 497 698 984 647 661 676 223 168
17 0 187 083 712 725 224 4 705 654 523 841 704
18 22 985 014 408 1 271 271 096 363 128 34 049 855 885 188 128
19 0 8 639 846 411 760 440 245 482 626 441 965 048
20 759 455 943 180 58 689 235 680 164 600 1 764 039 730 476 165 824
21 0 398 715 967 140 863 864 12 638 999 670 514 091 256
22 25 896 526 976 232 2 707 661 592 937 721 288 90 314 929 495 362 821 216
23 0 18 389 434 921 635 285 800 643 797 168 943 155 174 632
24 906 280 281 013 716 124 852 857 467 211 187 784 4 579 056 522 808 853 475 648
26 32 415 166 885 106 016

Table A7. Enumeration results for d = 5.

n pn cn ρn

1 0 10 10
2 0 90 200
3 0 810 2 810
4 10 7 210 34 400
5 0 64 250 390 250
6 180 570 330 4 224 040
7 0 5 065 530 44 258 330
8 5 170 44 906 970 452 994 880
9 0 398 227 610 4 554 189 370

10 186 856 3 527 691 690 45 150 385 960
11 0 31 255 491 850 442 585 257 210
12 7 762 660 276 741 169 130 4 298 424 239 520
13 0 2 450 591 960 890 41 422 888 065 930
14 355 211 280 21 690 684 337 690 396 562 641 220 520
15 0 192 003 889 675 210 3 775 000 221 446 410
16 17 452 391 500 1 699 056 192 681 930 35 759 109 994 183 040
17 0 15 035 937 610 909 770 337 271 171 816 820 170
18 905 482 413 120 133 030 135 015 071 770 3 168 963 365 639 859 240
19 0 1 177 032 340 670 878 170 29 674 213 141 523 338 410
20 49 043 820 354 532 10 412 322 608 416 261 050 277 027 018 652 760 361 440
21 0 92 113 105 222 899 934 010 2 579 137 185 681 364 258 410
22 2 750 466 599 904 160 814 766 179 787 983 302 090 23 952 499 155 763 685 289 000
23 0 7 207 026 563 685 440 727 850 221 945 733 507 158 827 283 850
24 158 750 348 183 470 420 63 742 525 570 299 581 210 090 2 052 336 893 487 422 784 497 920
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Table A8. Enumeration results for d = 6.

n pn cn ρn

1 0 12 12
2 0 132 288
3 0 1 452 4 908
4 15 15 852 73 152
5 0 173 172 1 012 980
6 350 1 887 492 13 402 992
7 0 20 578 452 171 862 548
8 13 545 224 138 292 2 154 376 608
9 0 2 441 606 532 26 543 662 692

10 679 716 26 583 605 772 322 653 340 560
11 0 289 455 960 492 3 879 491 118 732
12 39 976 300 3 150 796 704 012 46 230 423 160 608
13 0 34 298 615 880 372 546 792 606 800 628
14 2 617 358 820 373 292 253 262 692 6 426 234 180 376 752
15 0 4 062 873 240 668 412 75 112 752 191 837 340
16 185 273 093 790 44 214 072 776 280 252 873 794 699 391 076 512
17 0 481 167 126 859 845 852 10 122 684 403 923 474 108
18 13 920 089 014 540 5 235 893 033 922 430 692 116 838 193 175 893 802 928
19 0 56 975 931 806 991 140 292 1 344 159 773 521 989 828 132
20 1 096 290 450 188 094 619 957 835 069 070 600 132 15 418 548 294 824 495 850 720
21 0 6 745 858 105 534 183 489 092 176 395 640 689 420 430 956 932
22 89 700 671 592 514 860 73 398 893 398 168 440 782 892 2 013 229 649 322 045 469 598 928
23 0 798 629 075 137 768 054 499 292 22 927 303 036 559 662 145 100 348
24 7 575 158 745 971 797 850 8 689 265 092 167 904 101 731 532 260 584 818 024 344 531 410 575 072
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